
Documentation - Adding and Removing Related Objects

Page 1 - Last modified on October 27, 2013 16:31

Contents

• Add
• Remove
• Add and Remove on many-to-many navigation properties
• Clear
• Read only navigation properties

Navigation properties that return collections (e.g., anEmployee.Orders) are always of the type RelatedEntityList<T>. The
RelatedEntityList in turn provides Add and Remove methods that may be used to add or remove related entities.

Add
The Add() method takes a parameter of the type contained by the collection.  For example, here we add a new Order to an
Employee's Orders collection:

C#Order anOrder = new Order();
anOrder.OrderDate = DateTime.Today;
anOrder.FreightCost = Convert.ToDecimal(999.99);
anEmployee.Orders.Add(anOrder);

VBDim anOrder As New Order()
anOrder.OrderDate = Date.Today
anOrder.FreightCost = Convert.ToDecimal(999.99)
anEmployee.Orders.Add(anOrder)

Invoking Add() adds the supplied item to the collection. If the relation between the parent and child types is 1-to-many and
the supplied item is currently associated with a different parent, then Add() simultaneously removes it from the corresponding
collection of the other parent. The equivalent result on table rows in a relational database is that the child entity’s foreign key
value is changed. 

Note in the above snippet that we did not need to set the parent SalesRep property of the new Order:

C#anOrder.SalesRep = anEmployee; //don't need this; Add() will handle it

VBanOrder.SalesRep = anEmployee  ' don't need this; Add() will handle it

Invocation of the Add() method on anEmployee.Orders produced the equivalent result.

Regardless of whether the child entity is added to the parent collection or the parent navigation property is set on the child,
the associated foreign key property on the child is also set.  This is true even when an entity is in an Added state and contains a
temporary id. 

Remove
Remove() also takes a parameter of the type contained by the collection. It dissociates the indicated instance from the
collection’s parent. Speaking again of the equivalent result on table rows in a relational database, the child entity’s foreign key
value is set to null; however, if the foreign key property is also part of the entity's primary key the value is unchanged.

C#anEmployee.Orders.Remove(anOrder);

VBanEmployee.Orders.Remove(anOrder)

Note that while Remove unassigns the Order from the target Employee, removing it from the collection returned by the
navigation property, it does not remove it from the cache or mark it for deletion.  If you want the Order removed from the
cache or deleted from the back-end datastore you must call EntityAspect.Remove() or EntityAspect.Delete().  Rememember that
removing an item from the cache is not the same thing as deleting the item; if you want the item permanently deleted from the
database be sure to call Delete.

Add and Remove on many-to-many navigation properties
You will also use Add() and Remove() on many-to-many navigation collections.  

A many-to-many relationship is one in which two entities are linked by a many-to-many join table that has "no payload", that
is, no columns other than the two foreign keys (which also form a composite primary key. An example (from the NorthwindIB
sample database) would be an Employee linked to a Territory by means of an EmployeeTerritory table whose composite primary
key consists of the two foreign keys EmployeeId and TerritoryId, and which has no other columns.

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.RelatedEntityList%601.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.RelatedEntityList%601~Add.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.RelatedEntityList%601~Remove.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/parent-child-navigation-properties#HMany-to-many


Documentation - Adding and Removing Related Objects

Page 2 - Last modified on October 27, 2013 16:31

With these "no payload" many-to-many associations, the join table is not included in your entity model.  Continuing the
Employee, EmployeeTerritory, and Territory example, only the Employee and Territory entities are included in your entity
model; the join table is abstracted away.  

When you call Add() and Remove() on a many-to-many navigation property, DevForce performs the necessary housekeeping
to ensure that when these changes are saved to the database the join table is updated as needed with the appropriate insertions
and deletions.

Because many-to-many relationships do not include a foreign key, Add and Remove are the only way to modify these
relationships. 

For example, the following will create a new linking entry for the EmployeeTerritory relationship:

C#var employee = mgr.Employees.Include("Territories").First(e => e.EmployeeID == 1);
var territory = mgr.Territories.First(t => t.TerritoryDescription == "Terra Incognita");
employee.Territories.Add(territory);

Although neither entity above has changed, the EntityManager is aware of the new linking entry and when SaveChanges is
called the entry will be added to the link table in the database.

To remove the association:

C#var employee = mgr.Employees.Include("Territories").First(e => e.EmployeeID == 1);
var territory = employee.Territories.First(t => t.TerritoryDescription == "Terra Incognita");
employee.Territories.Remove(territory);

Here again, the EntityManager is aware of the removed linking entry and will delete the entry from the link table in the
database when SaveChanges is called.

Clear
Calling Clear() on a RelatedEntityList is the equivalent of calling Remove for every item in the collection.  For one-to-many
relationships, the foreign key property of child items is reset to null, and the items are marked as Modified.  For many-to-many
relationships, the link entries are deleted.  In both cases, EntityManager.HasChanges will register that pending changes are
waiting to be saved to the database.

Read only navigation properties
By default navigation properties return a collection which may be modified.  You can set the RelatedEntityList to be read only
via the EDM Designer.  In the designer, select the navigation property, then set "Is collection read only" in the Model Properties
window to True.  


