
Documentation - Advanced database connections

Page 1 - Last modified on August 15, 2012 17:20

Contents

• Review the basics first
• The Code First database connection string
• The DataSourceKeyName

• (1) Custom DbContext with a DataSourceKeyName attribute
• (2) DbContext but no DataSourceKeyName attribute
• (3) EntityManager with a DataSourceKeyName attribute
• (4) EntityManager but no DataSourceKeyName attribute

• DbContext should have a connection constructor
• Automatic database creation
• Automatic database re-generation
• Convert EDM connection strings
• Build vs. Runtime
• Multiple Databases
• Multiple Models
• Living without SQL Server Express

• Add a connection string
• Set the DefaultConnectionFactory

This topic explores in depth how DevForce determines your connection string and when it connects to your database.
The basics were covered in the topic, "Set the database connection string" topic.

Review the basics first
In the topic, "Set the database connection string", we described the mainstream approaches to connecting your application to a
database. Please start there before reading this topic.

Here we revisit the same database connection material only this time in more detail and with more advanced scenarios
in mind. Connecting to a database isn't complicated. But as you depart from the familiar path and start introduce unusual
circumstances, the number of options grows and so does the apparent complexity.

The Code First database connection string
Entity Framework Code First connects to a database with a standard connection string, not an EDM connection string. Since
DevForce provides additional connection logic than the Entity Framework - providing data source keys, data source extensions,
and data source key resolvers - DevForce uses its own discovery logic in finding the appropriate connection string.

DevForce usually retrieves it from the <connectionStrings> section of a configuration file (app.config or web.config). For
example:

XML<add
 name="CodeFirstDemo"
 connectionString="data source=.;initial catalog=CodeFirstDemoDb;integrated
security=True;multipleactiveresultsets=True;App=EntityFramework"
 providerName="System.Data.SqlClient"
/>

DevForce can also acquire connection strings dynamically from other, arbitrary sources by calling your custom
DataSourceKeyResolver.

The DataSourceKeyName
A DataSourceKeyName in DevForce identifies symbolically the data source for entities in a model. With DevForce Code First,
this name can be specified in several different ways, based upon how you construct your model.

The following table summarizes, in priority order, how DevForce determines the DataSourceKeyName (the "key"):

Condition Result

DbContext decorated with a DataSourceKeyName attribute The key is the name specified in the attribute

DbContext lacks the attribute The key is the DbContext class name

EntityManager decorated with a DataSourceKeyName attribute The key is the name specified in the attribute

EntityManager lacks the attribute The key is the EntityManager class name

As you can see from above, the DataSourceKeyName attribute is used to explicitly set the key name, overriding the default
naming convention. We explore each of the possibilities in more detail below.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-set-database-connection-string
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-set-database-connection-string
http://msdn.microsoft.com/en-us/library/cc716756.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/data-sources#HDatasourceextensions
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/data-sources#HDynamicconnectionstrings
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/configure-programmatically

Documentation - Advanced database connections

Page 2 - Last modified on August 15, 2012 17:20

(1) Custom DbContext with a DataSourceKeyName attribute

You wrote a custom DbContext and decorated it with a DataSourceKeyName attribute.

C#[DataSourceKeyName("CodeFirstDemo")]
public class ProductDbContext : DbContext {
 // Constructor with connection parameter
 public ProductDbContext(string connection) : base(connection) {...}
}

The DataSourceKeyName is "CodeFirstDemo". It doesn't matter whether you did or did not write an EntityManager.

When using the DataSourceKeyName attribute you are required to provide a DbContext constructor which accepts a
connection string parameter; you will receive a build error if you do not.

(2) DbContext but no DataSourceKeyName attribute

You wrote a custom DbContext but didn't decorate it with a DataSourceKeyName attribute.

C#public class ProductDbContext : DbContext {
 // Constructor with connection parameter
 public ProductDbContext(string connection) : base(connection) {...}
}

The DataSourceKeyName is the name of the DbContext class, "ProductDbContext". It doesn't matter whether you did or
did not write an EntityManager.

It's always a good idea to provide a constructor that takes a string connection parameter, as in this example. DevForce will
use this constructor if present, and perform its own logic to find and resolve the DataSourceKeyName and connection string. If
this constructor is not present standard Entity Framework conventions are used.

(3) EntityManager with a DataSourceKeyName attribute

You wrote a custom EntityManager decorated with a DataSourceKeyName attribute. You didn't write a custom DbContext.

C#[DataSourceKeyName("ProductDb")]
public class ProductEntities : EntityManager { ... }

The DataSourceKeyName is "ProductDb".

(4) EntityManager but no DataSourceKeyName attribute

You wrote a custom EntityManager but didn't decorate it with a DataSourceKeyName attribute. You didn't write a custom
DbContext.

C#public class ProductEntities : EntityManager { ... }

The DataSourceKeyName is the name of the EntityManager class, "ProductEntities ".

DbContext should have a connection constructor
When you write a custom DbContext you should provide it with a constructor that takes a string parameter. That parameter
contains connection information which the Entity Framework uses to find ... or possibly create ... the database for your model.

If you write a constructor with a string parameter ("a connection constructor"), DevForce can provide the proper connection
string. If you do not, standard Entity Framework conventions are used. In brief, EF conventions can be summarized as follows:

If the default DbContext constructor is called from a derived context, then the name of the derived context is
used to find a connection string in the app.config or web.config file. If no connection string is found, then the
name is passed to the DefaultConnectionFactory registered on the Database class. The connection factory then
uses the context name as the database name in a default connection string. (This default connection string points
to .\SQLEXPRESS on the local machine unless a different DefaultConnectionFactory is registered.) This is
explained further in the "Remarks" section of the MSDN documentation for DbContext.

If you don't provide a connection constructor:

• The DevForce DataSourceKeyName and associated connection string are ignored by the Entity Framework
• EF looks in the configuration file for a connection string with the name of the DbContext class
• EF may create a database with the full name of your DbContext, e.g., "MyApp.ProductDbContext"

http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext(v=VS.103).aspx

Documentation - Advanced database connections

Page 3 - Last modified on August 15, 2012 17:20

• You will not be able to change the database connection string dynamically,

Automatic database creation
The Entity Framework can (and usually will) create a database that matches your model if it can't find the requested database.

The name of the database EF creates depends on how the DbContext is constructed.

1. If the DbContext is instantiated with the constructor that takes a string parameter, the DbContext uses the string
argument to look for the database connection string.

1. If the string argument is just a name, Entity Framework looks in the configuration file for a matching connection
string.

1. If it finds such a string but can't connect to the database with that string, it creates a new database using the
database name specified in the connection string.

2. If it doesn't find a connection string in the configuration file, it creates a database with the name passed
into the constructor, e.g. "CodeFirstDemo".

2. If the string argument is a connection string but EF can't connect to the database with that string, it creates a new
database using the database name specified in the string.

2. If the DbContext is constructed with its default, parameterless constructor, Entity Framework looks for a connection
string in the configuration file that has the same name as the DbContext class.

1. If it finds such a string but can't connect to the database with that string, it creates a new database using the
database name specified in the connection string.

2. If it doesn't find a connection string in the configuration file, it creates a database with the full name of the
DbContext class, e.g. "MyApp.ProductDbContext".

With these rules in mind, if DevForce can't find a connection string for a DataSourceKeyName it will pass this
DataSourceKeyName into the DbContext constructor, allowing EF to follow decision path #1.1.

When EF creates a database it does so on the default database server. The default server is SQL Server Express unless you
change it.

Automatic database re-generation
If Entity Framework doesn't find the requested database, its default behavior is to create it such that it matches the entity model.

You can set an alternative database initialization strategy by calling Database.SetInitializer(...) in your DbContext constructor
as in the following example:

C#public ProductDbContext(string connection) : base(connection)
{
 // Do not use in production; for early development only
 Database.SetInitializer(
 new DropCreateDatabaseIfModelChanges<ProductDbContext>());
}

Notice the DropCreateDatabaseIfModelChanges<T> object passed into the static Database.SetInitializer method call.

That’s an initialization strategy object that tells EF to re-create the database if it detects model changes.

Here are the stock initialization strategies that are useful in early development when you don't care about the database schema
and data. All of them are dangerous in production code:

C#//Default strategy: creates the DB only if it doesn't exist
Database.SetInitializer(new CreateDatabaseOnlyIfNotExists<ProductDbContext>());
//Recreates the DB if the model changes but doesn't insert seed data.
Database.SetInitializer(new RecreateDatabaseIfModelChanges<ProductDbContext>());
//Always recreates the DB every time the app is run.
Database.SetInitializer(new DropCreateDatabaseAlways<ProductDbContext>());

You can create your own initialization strategy by inheriting from one of these and overriding the Seed method.

Never enable any of these database initialization strategies in production code. Never enable them if there is a chance that the
Entity Framework could destroy potentially valuable data ... even valuable test data.

You can stop Entity Framework from creating or re-creating the database - and should do so in production - by calling the
Database.SetInitializer static method with a null argument. One possible place to do that is in the constructor as follows:

C#public ProductDbContext(string connection) : base(connection)
{

http://msdn.microsoft.com/en-us/library/gg679461(v=VS.103).aspx
http://msdn.microsoft.com/en-us/library/gg679461%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/gg679461%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/gg679410%28v=VS.103%29.aspx

Documentation - Advanced database connections

Page 4 - Last modified on August 15, 2012 17:20

 Database.SetInitializer(null); // Never create a database
}

Convert EDM connection strings
A Code First application uses a standard connection string to connect to a database.

If you are migrating from a "Database First" or "Model First" model to "Code First", you'll have to revise your connection
string from an EDM connection string to a standard ADO.NET database connection string.

Here's a typical EDM string as defined in a configuration file after reformatting for readability:

XML<add
 name="default"
 connectionString=
 "metadata=res://*/Model1.csdl|res://*/Model1.ssdl|res://*/Model1.msl;
 provider=System.Data.SqlClient;provider connection string="
 data source=.;initial catalog=CodeFirstDemoDb;integrated security=True;multipleactiveresultsets=True;App=EntityFramework
 ""
 providerName="System.Data.EntityClient"
/>

Convert it to a regular connection string configuration in four steps:

1. Change the name of the string to match your model's DataSourceKeyName
2. Locate the inner database connection information, beginning at the words "data source"
3. Discard everything else in the "connectionString" segment
4. Change the "providerName" from "System.Data.EntityClient" to "System.Data.SqlClient" (for SQL Server)

If you were previously using a .NET provider other than "SqlClient" use that providerName here.

After application of these steps our example looks like this:

XML<add
 name="CodeFirstDemo"
 connectionString="data source=.;initial catalog=CodeFirstDemoDb;integrated
security=True;multipleactiveresultsets=True;App=EntityFramework"
 providerName="System.Data.SqlClient"
/>

Build vs. Runtime
DevForce generates metadata about your model when you build your model project. DevForce harvests most of its own
metadata from Entity Framework. So as part of the process, DevForce constructs a DbContext - your DbContext if you've
written one - to get that metadata,

During the build, DevForce looks for a suitable connection string in the model project's configuration file. It does not use a
DataSourceKeyResolver to acquire connection information. DevForce then passes the connection (if found) into the DbContext
constructor (if it has a constructor that accepts a string).

This connection string management will be transparent to you if you've defined your model within your application or web
project because such projects tend to have a configuration file that contains a database connection string anyway.

But many developers prefer to keep the model in its own, separate project. If you have a separate model project, the project
must contain its own App.config file [DevForce 6.1.3; this requirement is lifted in subsequent releases]. That App.config could
have a connection string for metadata generation purposes (see SQL Express discussion, below).

Don't confuse the model project App.config with the application configuration file. At runtime, DevForce refers to the proper
configuration file, the one defined in the application or the web project. It ignores the model project's App.config.

Multiple Databases
DevForce applications can access more than one database. Your customer information might be in one database while your
accounting information is in a separate database. You probably would build corresponding "Customer" and "Accounting"
models, each with its own entity types.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/edm
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-generate-metadata
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/configure-programmatically

Documentation - Advanced database connections

Page 5 - Last modified on August 15, 2012 17:20

An Entity Framework DbContext can only reference a single database. The "Customer" and "Accounting" models would have
their own DbContexts, each with its distinct DataSourceKeyName. Entities in the "Customer" model might have the "Customer"
DataSourceKeyName and entities in the "Account" model might have the "Accounting" DataSourceKeyName.

An entity type can only be in one model and have one DataSourceKeyName.

Unlike the DbContext, a DevForce EntityManager can retrieve entities from multiple models backed by multiple
databases. DevForce can save changes to multiple databases in single, distributed transaction. DevForce uses the entity type's
DataSourceKeyName to determine where to save the entity data.

Multiple Models
You must define multiple models if your application accesses more than one database. You may choose to create multiple
models even if all data are stored in one database. A modular application might have a "CRM" module for managing customer
relationships and an "Accounting" module for managing the books. You could have separate models for each module. Although
all model data might be stored in one database, you'd have some separation in your application's model design.

You can define separate models either by defining separate EntityManagers or separate DbContexts or both. If you have both,
you probably want to coordinate your definitions of EntityManagers and DbContexts so they pair up, one-to-one.

When DevForce detects multiple EntityManagers, it divides the entity classes into separate models based on the types it
detects in each manager's EntityQuery properties. When you define multiple DbContexts, the classes are allocated to separate
models based on the types detected in each DbContext's DbSet properties.

Each model has its own DataSourceKeyName, determined by the same decision rules discussed above.

Living without SQL Server Express
We know that Entity Framework Code First by convention uses Microsoft SQL Server Express. If you don't have SQL
Server Express installed you'll first discover the consequences of this convention when you build your Code First model with
DevForce: Visual Studio will appear to hang as your project is building, as EF hunts for your installation. Eventually EF times
out and reports an error. This happens because DevForce must generate model metadata at build time.

One easy resolution is to accept assimilation and install SQL Express. But, you certainly don't have to. It's easy to change the
convention and use any database provider supported by the Entity Framework.

There are two workarounds for those of you who can't or won't install SQL Express:

1. Add a connection string to the configuration file
2. Change the convention by setting the DefaultConnectionFactory

Add a connection string

This approach may be best if you are connecting to an existing database. The name of the connection string must match your
DataSourceKeyName and should be fully specified as in the example above.

If you define your model in its own project, add an App.config to that project. The App.config needs only a
<connectionStrings/> section with the connection string. The database named in this Model project connection string does not
have to exist. At runtime the application uses the connection string defined in the application or web project configuration.
At runtime the model project's App.config is ignored; it's sole purpose is to provide the database and provider information for
gathering metadata.

Set the DefaultConnectionFactory

You can override the default convention to use SQL Server Express by setting EF's static Database.DefaultConnectionFactory to
use the provider and connection information of your choice.

Locate your DefaultConnectionFactory configuration code where it will execute before DevForce makes a request of the Entity
Framework: the static constructor of your custom DbContext is a good place.

C#static MyDbContext()
{
 ConfigureForSqlServer(); // See below
}

Here's an example of DefaultConnectionFactory configuration for SQL Server:

C#static ConfigureCodeFirstForSqlServer()
 {

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-set-database-connection-string#HDefaultconnections
http://msdn.microsoft.com/en-us/library/system.data.entity.database.defaultconnectionfactory(v=VS.103).aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-dbcontext

Documentation - Advanced database connections

Page 6 - Last modified on August 15, 2012 17:20

 // Set base connection string
 const string baseConnectionString =
 "Data Source=.; " + // my SQL Server name
 "Integrated Security=True; " +
 "MultipleActiveResultSets=True; " +
 "Application Name=CodeFirstWalk"; // change to suit your app
 Database.DefaultConnectionFactory = new SqlConnectionFactory(baseConnectionString);
 }

The base string is a collection of connection string parts. When EF receives a real connection string, it blends the parts from
this base string with the real connection string (the real string’s parts take precedence) to produce the final string. If EF can’t
find a string or can’t find the database described in the string … and EF is configured to create a database … EF will create a
database on the default database server you prescribed in the “Data Source=” part of the base string.

In this example, “Data Source=.;” resolves to SQL Server on the author’s machine; if EF creates a database, it will create a
SQL Server database. If the base string had no “Data Source=” part or specified “Data Source=./SQLEXPRESS;”, EF would
attempt to create the database on SQL Server Express (the default) on the author’s machine.

Specifying an Application Name in a connection string makes it easier to find the app’s database commands in a Profiler trace
log; the Application Name appears prominently as seen in this profiler snapshot:

http://johnnycoder.com/blog/2006/10/24/take-advantage-of-application-name/

