
Documentation - Helper class

Page 1 - Last modified on August 15, 2012 17:21

Contents

• Add validation rules to a VerifierProvider
• Add and remove rules of a VerifierEngine
• Add and remove property interceptors

You often delegate a portion of the entity business logic to a helper class defined outside the entity. The architectural forces
driving this choice are too numerous to list. You will know when externalizing the logic makes sense.

It is "obvious" how to add new entity class members that delegate work to helper classes. It is less obvious how you delegate
work from within a generated property. Once the class is generated, you can't change its implementation.

Fortunately, the generated properties are implemented with PropertyMetadata objects as seen in this Customer.CompanyName
property

C#public string CompanyName {
 get { return PropertyMetadata.CompanyName.GetValue(this); }
 set { PropertyMetadata.CompanyName.SetValue(this, value); }
}

VBPublic Property CompanyName() As String
 Get
   Return PropertyMetadata.CompanyName.GetValue(Me)
 End Get
 Set(ByVal value As String)
    PropertyMetadata.CompanyName.SetValue(Me, value)
 End Set
End Property

The PropertyMetadata.CompanyName objects contain "get" and "set pipelines that are responsible for numerous behaviors
including validating input, executing custom actions through property interceptors, and raising the PropertyChanged event.
In DevForce you can inject your own business logic into these pipelines and do so from outside the entity class via helper
classes. Your options include:

1. Add more validation rules via a VerifierProvider
2. Add and remove the validation rules of a VerifierEngine.
3. Add and remove the PropertyInterceptorActions of a PropertyInterceptorManager.

Add validation rules to a VerifierProvider
You verify the integrity of property input values with validation rules. The PropertyMetadata object within each generated
property triggers the validation process that involves the application of the rules.

The DevForce code generator produces some rules based on information gleaned from the database schema (non-null, string
length). You can add more in a companion metadata "buddy" class.

You can also add rules anywhere in your application. One approach is to define an implementation of IVerifierProvider that
adds new rules for an entity type. DevForce uses MEF to discover these VerifierProvider classes and DevForce executes the
automatically when it is ready to build up the rule-set for the entity type. Here's an example:

C#public class NorthwindModelVerifierProvider : IVerifierProvider
{
   public IEnumerable<Verifier> GetVerifiers(object verifierProviderContext)
    {
        var verifiers = new List<Verifier>
            {
              MakeNotEmptyGuidVerifier<Customer>(
                  Customer.PropertyMetadata.CustomerID.Name),
              MakeNotEmptyGuidVerifier<Order>(
                  Order.PropertyMetadata.CustomerID.Name),
            };
       return verifiers;
    }
}

VBPublic Class NorthwindModelVerifierProvider
 Implements IVerifierProvider
 Public Function GetVerifiers(ByVal verifierProviderContext _
   As Object) As IEnumerable(Of Verifier)
   Dim verifiers = New List(Of Verifier) _
      From {MakeNotEmptyGuidVerifier(Of Customer) _
      (Customer.PropertyMetadata.CustomerID.Name), _

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-generation
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierEngine.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.PropertyInterceptorManager.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/architecture-metadata-class
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.IVerifierProvider.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/MEF


Documentation - Helper class

Page 2 - Last modified on August 15, 2012 17:21

      MakeNotEmptyGuidVerifier(Of Order) _
      (Order.PropertyMetadata.CustomerID.Name)}
   Return verifiers
 End Function
End Class
The details are covered in the "Validate" topic. Here it is enough to see that, inside the GetVerifiers method, we're adding two
rules, one each for Customer and Order, both ensuring that the CustomerID they both care about is not the empty Guid (the one
with all zeros).

The words "verify" and "validate" mean the same thing in this discussion. DevForce uses the term verifier for historical
reasons that are irrelevant to us. 

Add and remove rules of a VerifierEngine
Every EntityManager is associated with a VerifierEngine. The generated properties of an entity attached to an EntityManager
have access to the manager's VerifierEngine and use that engine to validate input values. You can change property validation
rules by grabbing that VerifierEngine and adding or removing property validation rules. You would likely do that in a helper
class conveniently located in the place where you configure the application's entity model.

A static VerifierEngineCreated event affords the opportunity to dynamically configure every VerifierEngine the application
creates.

Add and remove property interceptors
Validations pass judgment on the validity of input. They may report problems but they don't change input values. Property
interceptors give you complete control over the behavior of any generated property.

You use a property interceptor if you want to change an input value or alter the value returned by a property getter. You can
also use a property interceptor to do something other than manipulate a property's data values. Property level authorization is a
common use for a property interceptor. If an unauthorized user attempts to set the property, the interceptor could cancel the set
or throw an exception.

You can add property interceptors to the custom partial class, a technique that locates the business logic inside the class.

You can also add property interceptors dynamically outside the entity class in a place that is convenient to your purpose. You
might add interceptors dynamically if you had a data-driven authentication scheme, perhaps one that relied on a combination of
the user's rights and authorization metadata imported from a database. That is the kind of thing you should create and operate
outside the entity class.

Here is a much simpler example, an interceptor that removes whitespace from a Customer.ContactName input value.

C#private static void AddContactNameInterceptor()
{
    var act = new PropertyInterceptorAction<
                  DataEntityPropertySetInterceptorArgs<Customer, string>>(
           typeof (Customer),
            Customer.EntityPropertyNames.ContactName,
            PropertyInterceptorMode.BeforeSet,
            args =>
            {
               if (null == args.Value) return;
                args.Value = Regex.Replace(args.Value, @"\s", "");
            }
        );
    PropertyInterceptorManager.CurrentInstance.AddAction(act);
}

VBPrivate Shared Sub AddContactNameInterceptor()
 Dim act = New PropertyInterceptorAction(Of DataEntityPropertySetInterceptorArgs _
    (Of Customer, String))(GetType(Customer), Customer.EntityPropertyNames.ContactName, _
    PropertyInterceptorMode.BeforeSet, Function(args)
If Nothing Is args.Value Then
 Return
End If
args.Value = Regex.Replace(args.Value, "\s", "")
    End Function)
  PropertyInterceptorManager.CurrentInstance.AddAction(act)
End Sub

The meat of the interceptor is in the lambda Action delegate.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validate
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierEngine.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierEngine~VerifierEngineCreated_EV.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/property-interceptors
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-partial-class-file


Documentation - Helper class

Page 3 - Last modified on August 15, 2012 17:21

C#  ...
   args =>
   {
      if (null == args.Value) return;
       args.Value = Regex.Replace(args.Value, @"\s", "");
   }
  ...

VB  ...
  Sub(args)
   If Nothing Is args.Value Then
     Return
   End If
    args.Value = Regex.Replace(args.Value, "\s", "")
 End Sub
  ...

In practice you would define this as an attributed property interceptor inside the Customer partial class; that's easier and there
is no obvious reason to define this domain behavior outside the entity class. The contrived example does illustrate the mechanics
of adding a dynamic property interceptor outside the entity class.

If you had a general rule about removing whitespace that applied to many properties of many entity types, then it makes
sense to add a general purpose property interceptor to the PropertyInterceptorManager in a helper class near the start of the
application. 

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/attribute-interception
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/dynamic-interception

