Documentation - Execute scalar query asynchronously

Contents

* The problem
* AsScalarAsync

A scalar immediate execution query is a LINQ query which performs an aggregation (such as Count or Group) or returns only
one element (such as First or Single). Because these methods force immediate execution of the query they can't be directly
used with asynchronous queries, but using the AsScalarAsync method you can execute scalar immediate execution queries
asynchronously.

The problem

You've probably noticed something about a query like the following:

Iint ct = manager.Customers.Count();

It doesn't return a query object (an EntityQuery<T>) as other queries do. Instead, it returns the count of the items in the entity
set.

Or consider another example:

ICustomer cust = manager.Customers.First();
It too doesn't return a query, but instead the first customer.

Both these queries are immediate execution queries in LINQ. They differ from the usual deferred execution queries which
allow you to build a query in one step and execute the query at a later time. Immediate execution queries execute, well,
immediately, and synchronously; you can't separate the creation of the query from the execution.

In an asynchronous environment such as Silverlight or a Windows Store application, where all queries sent to the
EntityServer must be executed asynchronously, immediate execution queries pose a problem. For example, you can't do the
following:

// Will not work!
var query = manager.Customers.First();
query.Execute Async();

AsScalarAsync

Enter the DevForce AsScalarAsync operator and the EntityScalarAsyncExtensions . It's easiest to understand this with an
example.

Iint ct = await manager.Customers.AsScalarAsync().Count();

This looks much the same as our earlier synchronous example, with one important difference. AsScalarAsync is called to convert
the query to an IEntityScalarQuery<T> before the Count method is called. The query has been executed immediately, but
asynchronously.

Like their synchronous counterparts, these methods can also accept a predicate. For example,
IEmployee emp = await manager.Employees. AsScalarAsync().First(e => e.LastName.StartsWith("D"));
You can also write more complex queries, such as the one below using an Include:

Employee emp = await manager.Employees.Include("Orders"). AsScalarAsync().FirstOrNullEntity(e => e.Id == 1);
var orders = emp.Orders; // Will not be pending.

Here's a query built dynamically:
var query = EntityQuery.Create(typeof(Customer));
var pd = PredicateBuilder.Make("CompanyName", FilterOperator.StartsWith, "D");
var cust = await query. Where(pd).AsScalarAsync().First();

The supported immediate execution methods are: All, Any, Average, Contains, Count, First, FirstOrDefault, FirstOrNullEntity,
LongCount, Max, Min, Single, SingleOrDefault, SingleOrNullEntity, and Sum. Examples of each are provided in the AP/

Page 1 - Last modified on September 14, 2012 20:31


http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityQueryExtensions~AsScalarAsync.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityQuery%601.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityScalarAsyncExtensions_members.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/include-related-entities
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/dynamic-queries
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityScalarAsyncExtensions_members.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityScalarAsyncExtensions_members.html

