
Documentation - Asynchronous navigation properties

Page 1 - Last modified on February 21, 2013 18:27

Contents

• EntityReferenceStrategy
• Scalar properties and the PendingEntity
• Collection properties and the PendingEntityList
• Deferred retrieval

Navigation properties can be loaded asynchronously as well as synchronously.  In asynchronous environments such
as Silverlight, Windows Store and mobile applications, all property navigation is done asynchronously, but you can enable
asynchronous property navigation in other environments too.

EntityReferenceStrategy
You use the EntityReferenceStrategy to define how reference properties are loaded.  

The EntityManager.DefaultEntityReferenceStrategy can be set on the manager to control all property navigation within the
EntityManager.  If you haven't set the DefaultEntityReferencyStrategy, then the EntityReferenceStrategy.Default is used.  There
are three predefined EntityReferenceStrategy choices, but you can also define your own.  The predefined choices are:

EntityReferenceStrategy.Default - Lazily load the navigation property.  Will be synchronous in .NET applications and
asynchronous in other environments.
EntityReferenceStrategy.NoLoad - Suppress property loading.  This is most frequently used when the reference data is already
available in cache and you don't want a data source query to be executed.
EntityReferenceStrategy.DefaultAsync - Lazily load the navigation property, asynchronously.

Asynchronous property navigation presents a challenge:  property navigation by its nature must return an immediate result. If
the query needs to execute asynchronously, then this immediate result must have some way of indicating that it is not (yet) a real
result and that the 'real' result is coming. This introduces the concepts of a PendingEntity and a PendingEntityList.  

Scalar properties and the PendingEntity
A scalar navigation property is one which returns a single instance of the reference entity and not a collection of entities.  For
example, Order.Customer is a scalar navigation property.

If a scalar navigation property is loaded asynchronously it will be a pending entity until loaded.  You can check if an entity
instance is pending via the EntityAspect.IsPendingEntity property.

When a pending entity is finally loaded into cache, the PendingEntityResolved event will be fired.

For example:

C#   Order anOrder = await manager.Orders.AsScalarAsync().FirstOrDefault();
  // Access the customer property:
  var customer = anOrder.Customer;
  bool isPending = customer.EntityAspect.IsPendingEntity;
  if (isPending) {
      customer.EntityAspect.PendingEntityResolved += (o, e) => {
         MessageBox.Show("Your customer is here!");
      };
   }

Collection properties and the PendingEntityList
A navigation property returning a collection will return a PendingEntityList when it must be loaded asynchronously.  Once
loaded, the PendingEntityListResolved event is fired.

C#  Customer customer = await manager.Customers.AsScalarAsync().FirstOrDefault();
 // Access the orders:
 var orders = customer.Orders;
 bool isPending = orders.IsPendingEntityList;
 if (isPending) {
     orders.PendingEntityListResolved += (o,e) => {
        MessageBox.Show("Your orders have arrived!")
     };
  }   



Documentation - Asynchronous navigation properties

Page 2 - Last modified on February 21, 2013 18:27

Deferred retrieval
When does the EntityManager fetch myOrder’s line items from the data source?

We might have written DevForce to fetch them automatically when it fetched myOrder. But if DevForce were to get the line
items automatically, why stop there? It could get the customer for the order, the sales rep for the order, and the products for each
line item.

Those are just the immediate neighbors. It could get the customer’s headquarter address, the sales rep’s address and manager,
and each product’s manufacturer. If it continued like this, it might fetch most of the database.

Retrieving the entire graph is obviously wasteful and infeasible. How often do we want to know the manager of the sales
rep who booked the order? Clearly we have to prune the object graph. But where do we prune? How can we know in advance
which entities we will need and which we can safely exclude?

We cannot know. Fortunately, we don’t have to know. We don’t have to know if we can be certain of continuous connection
to the data source. If we expect the application to run offline, we’ll have to anticipate the related entities we’ll need and pre-fetch
them. We’ll get to this issue later. We keep it simple. We use an entity query to get the root entities (such as myOrder). Then we
use entity navigation to retrieve neighboring related entities as we need them.

This just-in-time approach is called deferred retrieval (also known as "lazy instantiation", "lazy loading", "Just-In-Time [JIT]
data retrieval", and so on).

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager

