
Documentation - Query asynchronously

Page 1 - Last modified on September 17, 2012 08:39

Contents

• Async/await
• Task results
• Async scalar queries
• Cancelling a query
• Error handling
• Try and the QueryResult

Why query asynchronously?  You can avoid performance bottlenecks and enhance the overall responsiveness of your
application by using asynchronous programming.

Also see the "program asynchronously" topic for addiitonal information.

Async/await
With the new task-based asynchronous programming model, executing asynchronous queries has never been easier.  An
asynchronous query and result handling can now be written similarly to the familiar synchronous programming model. 

Here's a simple example.  We take a query, in this case for customers from the "UK", call ExecuteQueryAsync and await the
return of the results.  The await keyword tells the compiler to suspend further execution of this method and resume when the
asynchronous method completes.

C#public async void SomeMethod() {
  var query = manager.Customers.Where(c=> c.Country == "UK");
  var customers = await manager.ExecuteQueryAsync(query);
  doSomething(customers);
}

VBPublic Async Sub SomeMethod()
   Dim query = From c In manager.Customers Where c.Country = "UK"
   Dim customers = Await manager.ExecuteQueryAsync(query)
    doSomething(customers)
End Sub

It's that simple.  We added the async (or Async in Visual Basic) modifier to indicate that the method contains asynchronous
code, and the await (or Await) keyword to indicate that further processing in the method should be suspended until the
asynchronous task completes.  In the snippet above, the doSomething method will be called when the asynchronous query
completes.

Task results
Like its synchronous counterpart, asynchronous query execution comes in both generic and non-generic flavors:

On the EntityManager:

• Task<IEnumerable<T>> ExecuteQueryAsync<T>(IEntityQuery<T> query)
• Task<IEnumerable> ExecuteQueryAsync(IEntityQuery query)

As query extensions:

• Task<IEnumerable<T>> ExecuteAsync<T>(this IEntityQuery<T> query) 
• Task<IEnumerable> ExecuteAsync(this IEntityQuery query) 

These async query methods return a Task<TResult>, where TResult will be the IEnumerable or IEnumerable<T> of returned
objects.  In the earlier example retrieving customers from the UK, the return results are an IEnumerable<Customer>.

The task represents the asynchronous operation, and will indicate the status of the operation, the results of a completed
operation, and whether the operation was cancelled or failed.

Note that the task returned from a DevForce async method is "hot": it has already started and is scheduled for execution.

Async scalar queries
A scalar immediate execution query is a LINQ query which performs an aggregation (such as Count or Group) or returns only
one element (such as First or Single).  Because these methods force immediate execution of the query they can't be directly
used with asynchronous queries, but using the AsScalarAsync method you can execute scalar immediate execution queries
asynchronously.  We cover these queries in detail in a separate topic.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/program-asynchronously
http://msdn.microsoft.com/en-us/library/hh156513.aspx
http://msdn.microsoft.com/en-us/library/hh191564.aspx
http://msdn.microsoft.com/en-us/library/dd321424
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/async-immediate-execution


Documentation - Query asynchronously

Page 2 - Last modified on September 17, 2012 08:39

Cancelling a query
There are a number of ways to cancel an asynchronous query.

1. In a Querying event handler
2. In a Fetching event handler
3. In an EntityServerQueryInterceptor
4. With a CancellationToken

The first three options all work the same whether the query is synchronous or asynchronous.  The last option, the
CancellationToken, is unique to asynchronous tasks.  To cancel the task for an asynchronous query, provide a CancellationToken
in the method call:

• Task<IEnumerable<T>> ExecuteQueryAsync<T>(IEntityQuery<T> query, CancellationToken cancellationToken) 
• Task<IEnumerable> ExecuteQueryAsync(IEntityQuery query, CancellationToken cancellationToken) 
• Task<IEnumerable<T>> ExecuteAsync<T>(this IEntityQuery<T> query, CancellationToken cancellationToken) 
• Task<IEnumerable> ExecuteAsync(this IEntityQuery query, CancellationToken cancellationToken) 

The CancellationToken is a cancellation request.  DevForce will attempt to honor the request and cancel the async task, but
the request may arrive too late in the query lifecycle.

You'll generally use a CancellationToken when you wish to cancel an async query which is taking too long, or you have
multiple async tasks you wish to cancel at one time with the same CancellationToken.

Here's a simple example:

C#public async void TryQuery() {
  var manager = new DomainModelEntityManager(false);
  var cts = new CancellationTokenSource();
  cts.CancelAfter(2000);
 try {
    var customers = await manager.ExecuteQueryAsync(manager.Customers, cts.Token);
  } catch (OperationCanceledException oce) {
    MessageBox.Show("The query was cancelled after 2 seconds.");
  } catch (EntityServerConnectionException esce) {
    MessageBox.Show("The query failed.");
  }
}
 
The Task will be cancelled regardless of which of the query cancellation options you use to cancel an asynchronous query.  If
you await the Task, an OperationCanceledException will be thrown.

Error handling
An awaited task will throw an exception if it's either faulted or cancelled.  This is why you should wrap any await calls in a try/
catch.

Query execution exceptions are passed to the EntityManager's EntityServerError handler if one is defined.  If you do mark the
error as handled the exception will not be rethrown.
 

Try and the QueryResult
The async query methods returning an IEnumerable or IEnumerable<T> will all raise an exception if cancelled or an error
occurs.  But in some situations you might instead prefer to "try" to execute the query, and always return a "query result" which
provides query execution status and results.  For these situations, you can use the TryExecuteQueryAsync methods on the
EntityManager: 

• Task<QueryResult> TryExecuteQueryAsync(IEntityQuery query, CancellationToken cancellationToken)
• Task<QueryResult<T>> TryExecuteQueryAsync<T>(IEntityQuery<T> query, CancellationToken cancellationToken)

The QueryResult:

Member Summary

Cancelled   Whether the query was cancelled by any means.

ChangedEntities   All entitites retrieved as part of the fetch.

Error   The exception if an unhandled error was raised.

http://msdn.microsoft.com/en-us/library/dd997289.aspx


Documentation - Query asynchronously

Page 3 - Last modified on September 17, 2012 08:39

Query   The query executed.

ResolvedFetchedStrategy   The actual FetchStrategy used.

Results   The results of the query.

UntypedQuery   The IEntityQuery. 

WasFetched   Whether the data was fetched from the EntityServer.


