Documentation - Attribute interception

Contents

¢ Attribute interception

DevForce provides a mechanism to intercept and either modify or extend the behavior of any property on a DevForce entity.
This attribute interception is intended to replace, and expand upon, the technique of marking properties as virtual and overriding
them in a subclass. This facility is a lightweight form of what is termed Aspect-Oriented Programming.

Interception can be accomplished either statically, via attributes on developer-defined interception methods, or dynamically,

via runtime calls to the PropertylnterceptorManager. Attribute interception is substantially easier to write and should be the
default choice in most cases.

Attribute interception

DevForce supplies four attributes that are used to specify where and when property interception should occur. These attributes
are:

¢ BeforeGetAttribute
* BeforeSetAttribute
o AfterGetAttribute
o AfterSetAttribute

Under most conditions these attributes will be placed on methods defined in the custom partial class associated with a

particular DevForce entity. For example, the code immediately below represents a snippet from the auto-generated Employee
class.

(Generated code)

public partial class Employee : IdeaBlade.EntityModel.Entity {
public string LastName {
get {
return PropertyMetadata.LastName.GetValue(this);
}
set {
PropertyMetadata.LastName.SetValue(this, value);
}
}

Partial Public Class Employee
Inherits IdeaBlade.EntityModel.Entity
Public Property LastName() As String
Get
Return PropertyMetadata.LastName.GetValue(Me)
End Get
Set(ByVal value As String)
PropertyMetadata.LastName.SetValue(Me, value)
End Set
End Property

Property interception of the get portion of this property would be accomplished by adding the following code fragment to a
custom Employee partial class definition:

[AfterGet(EntityPropertyNames.LastName)]
public void UppercaseNameA fterGet(PropertyInterceptorArgs<Employee, String> args) {
var lastName = args. Value;
if (!String.IsNullOrEmpty(lastName)) {
args. Value = args. Value.ToUpper();
}
}

<AfterGet(EntityPropertyNames.LastName)>
Public Sub UppercaseNameAfterGet(By Val args As PropertylnterceptorArgs(Of Employee, String))
Dim lastName = args.Value
If Not String.IsNullOrEmpty(lastName) Then
args. Value = args. Value. ToUpper()
End If
End Sub

DevForce will insure that this method is automatically called as part of any call to the Employee.LastName ‘get’ property.
The “AfterGet” attribute specifies that this method will be called internally as part of the ‘get’ process “after” any internal get

Page 1 - Last modified on October 27, 2011 13:04

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entity
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/dynamic-interception
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.BeforeGetAttribute.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.BeforeSetAttribute.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.AfterGetAttribute.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.AfterSetAttribute.html

Documentation - Attribute interception

operations involved in the get are performed. The effect is that the LastName property will always return an uppercased result
For the remainder of this document, methods such as this will be termed interceptor actions.

The corresponding ‘set’ property can be intercepted in a similar manner.

[BeforeSet(EntityPropertyNames.LastName)]

public void UppercaseNameBeforeSet(IbCore.PropertyInterceptorArgs<Employee, String> args) {
var name = args. Value;

if (!String.IsNullOrEmpty(name)) {

args. Value = args. Value.ToUpper();
}
}

<BeforeSet(EntityPropertyNames.LastName)> _

Public Sub UppercaseLastName(By Val args As PropertyInterceptorArgs(Of Employee, String))
Dim lastName = args.Value
If Not String.IsNullOrEmpty(lastName) Then

args. Value = args. Value. ToUpper()
End If

End Sub

In this case we are ensuring that any strings passed into the ‘LastName’ property will be uppercased before being stored in the

Employee instance (and later persisted to the backend datastore). Note that, in this case, the interception occurs “before” any
internal operation is performed.

In these two cases we have implemented an ‘AfterGet’ and a ‘BeforeSet’ interceptor. BeforeGet and AfterSet attributes are also
provided and operate in a similar manner.

Page 2 - Last modified on October 27, 2011 13:04

