
Documentation - Match the semantics of cache queries to database queries

Page 1 - Last modified on August 15, 2012 17:21

Contents

• QueryStrategy and CacheQueryOptions

There are several interesting issues that arise when DevForce tries to execute the same EntityQuery against both a backend
datastore using the Entity Framework and its own local EntityManager cache. Internally DevForce uses LINQ to Entities to
query entities on the server but uses LINQ to Objects (LINQ against the .NET CLR) to query these same entities from the
local cache. Unfortunately, there are subtle semantic differences between LINQ to Entities and LINQ to Objects. Some of these
differences have to do with the way that LINQ to Entities itself is defined and some of these differences have to do with the
backend SQL database implementation that LINQ to Entities is communicating with. Ideally we want to match the semantics
of cache queries to database queries.

QueryStrategy and CacheQueryOptions
In general, it is DevForce's goal to insure that the execution of a query against the local EntityManager cache is interpreted
identically to that same query run against Linq to Entities on the server. This is accomplished by modifying the way that
standard LINQ to Objects queries are interpreted when run against the DevForce EntityManager cache. The goal is to mirror
LINQ to Entities semantics for these queries. While much of this can be performed automatically by DevForce, there is some
logic that is dependent on the settings of whatever backend SQL database is being used on the server.

The IdeaBlade.EntityModel.CacheQueryOptions property contains the settings that allow a developer to inform DevForce
of any database settings that may effect LINQ to Entities behavior, and that will therefore require DevForce to modify
the way it executes those same queries when run against the local cache as well. Typically, within a single application,
these settings will be the same for all queries and therefore the CacheQueryOptions class offers a static (shared in VB)
'Default' property that will be used by every query unless explicitly overridden on that query's QueryStrategy. By default this
property returns an instance of CacheQueryOptions that is appropriate for most standard SQL Server implementations. (See
CacheQueryOptions.DefaultSqlServerCompatibility)

Instances of the CacheQueryOptions class are immutable and can be created via the following constructor

C#public CacheQueryOptions(StringComparison stringComparison,
 bool useSql92CompliantStringComparison, GuidOrdering guidOrdering)

VBpublic CacheQueryOptions(StringComparison stringComparison, _
 Boolean useSql92CompliantStringComparison, GuidOrdering guidOrdering) 

Each of the parameters to the constructor is described below:

stringComparison:  Because many SQL databases are configured to allow queries against string columns to be performed in
a case insensitive manner, it is necessary to inform DevForce that it should mirror this behavior when performing queries against
its local cache. Note that this is different than standard Linq to Objects (.NET CLR behavior) which is to perform case sensitive
comparisons. The default for this is StringComparison.OrdinalIgnoreCase. (i.e. case insensitive comparisons).

useSql92CompliantStringComparison: The ANSI/ISO SQL-92 specification (Section 8.2, <Comparison Predicate>, General
rules #3) describes how to compare strings with spaces. The ANSI standard requires padding for the character strings used in
comparisons so that their lengths match before comparing them. The padding directly affects the semantics of WHERE and
HAVING clause predicates and other string comparisons. For example, ANSI-SQL considers the strings 'abc' and 'abc ' to be
equivalent for most comparison operations.  This is the behavior that DevForce mimics for local cache queries when this value is
set to true, otherwise normal .NET CLR comparison semantics are used (i.e. no padding). The default value for this flag is true.

guidOrdering: SQL Server currently sorts 'Guids' according to different rules than those used by the .NET CLR. This setting
allows the local cache to match SQL Server's sorting behavior in any LINQ query that involves grouping or ordering of 'Guid's.
 The default for this property is GuidOrdering.SqlServer. The only other option currently available is GuidOrdering.CLR.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/Entity+Framework
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/LINQ+to+Entities
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/LINQ+to+Objects
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.CacheQueryOptions.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.CacheQueryOptions~DefaultSqlServerCompatibility.html

