
Documentation - TempHire reference application

Page 1 - Last modified on January 26, 2015 13:58

Contents

• Launch the app
• Watch the videos
• Model
• Domain Services
• Common classes
• Main project
• Screen harness

• Video
• Web project

Punch ships with a reference application called TempHire, a line-of-business application for an imaginary temporary
hiring agency. TempHire is available as Silverlight and WPF solutions, sharing most of the code between the two solutions.
Download the very latest Source Code to stay up-to-date as the application evolves. TempHire demonstrates a best practice
architecture and design for real world enterprise and line-of-business applications. In order to keep the scope to a manageable
size, TempHire currently only implements the resource management module, but one could easily imagine other modules like a
scheduler, customer management etc.

Despite only having a single module, TempHire demonstrates the common pieces that make up a real application, including
login, view and view model composition for loosely-coupled, reusable UI components, multi-screen navigation, eventing,
validation, concurrency checking, multiple EntityManagers for sandbox editing and cache management, etc.

TempHire is written in Code-First style and utilizes multiple models to separate concerns such as security.

Launch the app
The Silverlight version of TempHire can be seen and experienced online and the source code is included in the Punch Samples
folder.

Demo URL: apps.ideablade.com/TempHire

Watch the videos
• The Punch YouTube playlist contains all of the Punch videos listed below.
• Punch: TempHire overview
• Punch: TempHire in Action
• Punch: Building TempHire
• Punch: TempHire solution structure (WPF)
• Punch: TempHire solution structure (Silverlight)
• Punch: TempHire domain model
• Punch: TempHire domain services
• Punch: TempHire main project
• Punch: TempHire main project (the shell)
• Punch: TempHire main project (view composition)
• Punch: TempHire main project (UI and miscellaneous components)

Model
TempHire contains two separate code-first models. DomainModel is the main model for all the application data and the
Security model is a very simple model for user authentication against a user table in a database. Separating the security concern
from the main application concerns like this, gives us the flexibility to later change to something like Active Directory or
Windows security much easier than if the security was baked into the main model.

The two models are not only independent in the code, but they are also mapped to two different physical databases, which
will be automatically created for you using the embedded SQL Server Compact.

Domain Services
Contains the Unit of Work, Repositories, Entity Factories and Business Services used by the ViewModels. This layer
implements the business processes and provides persistence ignorance to the UI.

http://punch.ideablade.com/
https://github.com/IdeaBlade/Cocktail
http://drc.ideablade.com/elqNow/elqRedir.htm?ref=http://apps.ideablade.com/TempHire/
http://www.youtube.com/playlist?list=PLC1E5E64FF03B5D96&feature=plcp
http://www.youtube.com/watch?v=3-jJGgdvwdY&list=PLC1E5E64FF03B5D96&index=1&feature=plpp_video
http://www.youtube.com/watch?v=wefKJrc1HdM&list=PLC1E5E64FF03B5D96&index=2&feature=plpp_video
http://www.youtube.com/watch?v=tqZIjnxVdgA&list=PLC1E5E64FF03B5D96&index=4&feature=plpp_video
http://www.youtube.com/watch?v=7u_iunbIdWA&list=PLC1E5E64FF03B5D96&index=5&feature=plpp_video
http://www.youtube.com/watch?v=Y5A4RUP_aQo&list=PLC1E5E64FF03B5D96&index=6&feature=plpp_video
http://www.youtube.com/watch?v=ApJYgNBR80c&list=PLC1E5E64FF03B5D96&index=7&feature=plpp_video
http://www.youtube.com/watch?v=icFb1ZWOUss&list=PLC1E5E64FF03B5D96&index=7&feature=plpp_video
http://www.youtube.com/watch?v=a567bfKeVSs&list=PLC1E5E64FF03B5D96&index=8&feature=plpp_video
http://www.youtube.com/watch?v=vcGVTsnX_YU&list=PLC1E5E64FF03B5D96&index=9&feature=plpp_video
http://www.youtube.com/watch?v=YSA0S4pd19w&list=PLC1E5E64FF03B5D96&index=10&feature=plpp_video
http://www.youtube.com/watch?v=pgYGzrJGi3c&list=PLC1E5E64FF03B5D96&index=11&feature=plpp_video
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/unit-of-work-pattern-and-persistence-ignorance
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/unit-of-work-pattern-and-persistence-ignorance#HPersistenceIgnorance


Documentation - TempHire reference application

Page 2 - Last modified on January 26, 2015 13:58

Common classes
Common classes and functionality that is most likely going to be used across multiple modules, which may live in their own
assemblies, are broken out into a Common project. 

Main project
The main project is TempHire, which contains all the views and view models, along with the entire UI logic. The UI is
decomposed into smaller views and view models that then get composed together into what we ultimately see on the glass.
This approach maintains flexibility in how the UI is arranged together and allows for many different orchestration scenarios. It
also facilitates the distribution of work among many developers in a team. Each developer can independently work on an entire
screen or parts thereof. 

Screen harness
A completely optional project is the screen harness to increase developer productivity. Learn more about the screen harness in
Punch or see the TempHire harness in action.

Video

Web project
Finally, the web project implements the server-side of TempHire for Silverlight or an N-tier deployment of the WPF version. It
hosts the Silverlight application and the DevForce Application Server. The two landing pages either lunch the Silverlight main
application (default.aspx) or the Silverlight screen harness (harness.aspx)

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/cocktail-development-harness
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/cocktail-development-harness
http://apps.ideablade.com/TempHire/Harness.aspx

