
Documentation - Conventions and diagnostics

Page 1 - Last modified on January 26, 2015 14:46

Contents

• Pick up where we left off
• Coding by convention
• The View/ViewModel matching convention
• Control binding conventions
• Diagnose the configuration
• Last call
• Ask the Mixologist

• Punch or Caliburn?
• How did it bind MainPage to MainPageViewModel?
• What are the naming conventions?
• Can I specify some data bindings explicitly?
• How is the AskForIt method bound to the button?
• Can I log my own messages?
• Debug logs do not appear in Release builds

In Lesson 2 we revised our simple, one-View Silverlight application to with Punch’s interpretation of the MVVM (Model-
View-ViewModel) pattern. We saw that Punch made many decisions on our behalf based largely on our observance of its default
naming conventions.

In this lesson, we’ll look more closely at the conventions we’ve relied upon so far. Conventions are fine … as long as you
follow them. If you inadvertently break with the conventions, your application can misbehave. 

The 03-HappyHour tutorial folder holds the state of this solution at the end of the lesson.

Pick up where we left off
We won’t make any permanent changes to the application in this lesson. We’ll make temporary breaking changes so that we can
see what trouble looks like and how to recover from common problems. At the end, we should be right back where we were at
the end of 02-HappyHour. For convenience we’ve provided a 03-HappyHour for you to play with.

Build and run [F5] to confirm it still works. After typing into the TextBox and clicking the button you should see.

Coding by convention
The essence of the Happy Hour application is confined to two classes, the MainPage and its companion MainPageViewModel.
The MainPage is a few lines of XAML with no code-behind:

XAML<Grid>
    <Grid.ColumnDefinitions>
        <ColumnDefinition Width="Auto"/>
        <ColumnDefinition Width="Auto"/>
    </Grid.ColumnDefinitions>

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/cocktail-tutorial-mvvm-cocktail


Documentation - Conventions and diagnostics

Page 2 - Last modified on January 26, 2015 14:46

    <StackPanel Margin=“8,0,0,8”>
        <TextBlock Text="It's HAPPY HOUR!" Style="{StaticResource TitleTextBlock}" />
        <TextBlock Text="What are you having?" Style="{StaticResource QuestionTextBlock}" />
        <TextBox x:Name="DrinkName" Margin="0,8,0,8" />
        <Button  x:Name="AskForIt" Content="Ask for it" Margin="0,0,0,4" />
    </StackPanel>
    <Image Source="/HappyHour;component/assets/happyhour_logo.png" Grid.Column="1" />
</Grid>

The MainPageViewModel is just a handful of public members with no apparent "view awareness":

C#[Export]
public class MainPageViewModel : Screen
{
   public string DrinkName { get { ... }  set { ... }  }
   public bool CanAskForIt { get { ... } }
   public void AskForIt() { ... }
}

The economy of this approach stems from Punch’s ability to connect the MainPageViewModel to the MainPage view and
bind the View’s controls to the ViewModel’s members … all by means of commonplace naming conventions:

• TextBox DrinkName to MainPageViewModel.DrinkName.
• Button AskForIt to MainPageViewModel.AskForIt and MainPageViewModel.CanAskForIt.

We gave Punch an opportunity to do its thing by constructing a bootstrapper as a top level resource in the App.xaml:

XAML<Application.Resources>
    <ResourceDictionary>
        <local:AppBootstrapper x:Key="bootstrapper" />
         ...
    </ResourceDictionary>
</Application.Resources>

The AppBootstrapper itself doesn’t look like much:

C#public class AppBootstrapper : Cocktail.FrameworkBootstrapper<MainPageViewModel> { }

That’s all it takes. The base FrameworkBootstrapper can:

• find the MainPage class that corresponds to the root MainPageViewModel.
• compose instances of both classes and set the DataContext  of the MainPage to the MainPageViewModel.
• inspect the instantiated View, gathering the "x:Name" values of UI controls.
• match these controls to compatibly named members of the ViewModel. 
• bind the controls to these ViewModel members based on wiring rules specific to each type of control. For example, it

binds the TextBox’s Text property to the ViewModel’s DrinkName property and binds the Button’s click behavior to the
ViewModel’s AskForIt method and CanAskForIt guard property.

These are pretty much the same steps we performed manually in the code and XAML of our initial homebrew MVVM
application back in Lesson 1. The beauty of the convention-based approach is that we don’t have to write that gunk any more.
We can concentrate on the important stuff and let Punch do the grunt work.

Let’s examine the conventions in use in our example.

The View/ViewModel matching convention
The first noteworthy convention matches the ViewModel to a View. In Punch applications we generally take what’s called
a “ViewModel First” approach: we identify a type of ViewModel to compose and let the Caliburn Micro framework find,
compose, and configure a corresponding View.

Per the default convention we take the name of the ViewModel, "MainPageViewModel", and strip out the word "ViewModel"
to get "MainPage". Then we look in the same assembly for a class with that name.

What if there is no matching view? Let’s create that problem and see what happens. 

1. Open MainPage.xaml. 

2. Rename its class to BadMainPage.

XAML<UserControl x:Class="HappyHour.BadMainPage"

http://drc.ideablade.com/xwiki/bin/view/Documentation/cocktail-tutorial-conventions-diagnostics#HHowdiditbindMainPagetoMainPageViewModel3F
http://drc.ideablade.com/xwiki/bin/view/Documentation/cocktail-tutorial-conventions-diagnostics#HWhatarethenamingconventions3F
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/cocktail-tutorial-bare-bones-mvvm


Documentation - Conventions and diagnostics

Page 3 - Last modified on January 26, 2015 14:46

3. Rebuild and run [F5].

The browser launches as before but instead of the application screen as we know it, we see this instead:

Punch is looking for a View to go with the MainPageViewModel. It can’t find one so Punch substitutes a default “Missing View”
consisting of a single TextBlock with message text.

You may not always understand why Punch can’t find the matching View but at least you know what ViewModel prompted the
search.

4. Restore BadMainPage to MainPage and make sure it works.

XAML<UserControl x:Class="HappyHour.MainPage"

Sometimes you have to clean the solution first to nudge Visual Studio into accepting these changes.

Control binding conventions
Punch tries to associate the name of each control – the value of the control’s "x:Name" attribute – with a public member of the
ViewModel.  We have two named MainPage controls: the TextBox called "DrinkName" and the Button called "AskForIt". 

Punch associates those control names with the DrinkName property and the AskForIt method of the MainPageViewModel as
you would expect. Punch also realizes that the CanAskForIt guard property determines whether or not the AskForIt method is
allowed to be called at the moment; it then wires the IsEnabled state of the button accordingly.

As your application evolves there is a good chance you will add, remove, and change ViewModel member names. You won’t
always remember to keep the View in sync. Coordination failures are even more likely when you add team members and divide
View and ViewModel design responsibilities among those members.

Let’s see what happens when we make a few destructive changes.

1. Remove the x:Name attribute from the TextBox in MainPage. We’re simulating a mistake in the XAML.

XAML<TextBox BorderThickness="1" BorderBrush="Blue" Margin="4" />

2. Rename the AskForIt method to SockItToMe in MainPageViewModel. We’re simulating a name change in the ViewModel
that wasn’t propagated to the View XAML.

C#public void SockItToMe() // AskForIt()

3. Build and run [F5].

The application compiles and runs. It appears as expected but misbehaves:

• The button is enabled whether or not there is text in the TextBox.
• Clicking the button does nothing.

The application didn’t throw an exception and there are no visual indications on screen or in any Visual Studio window to
indicate that anything is amiss.

We know what is wrong of course. But you can imagine how frustrating this could be when you have more complicated views
and many of them.

Don’t fix it yet. Leave it broken while we explore diagnostic remedies.

Diagnose the configuration
1. Run it again [F5].

2. Open the Visual Studio Output window while the application is running.

Punch has installed a logger, the DefaultDebugLogger, to track many aspects of your applications behavior. The log messages
appear in the Output window and look something like this:

Log0 : 1/16/2012 5:12:45 PM :  : IdeaBlade.Core.IdeaBladeConfig:Initialize : Initializing configuration ...
... More logs relating to IdeaBlade ... ignore for now ... focus on Cocktail.DefaultDebugLogger:Log
10 : ViewModelBinder INFO: Binding HappyHour.Views.MainPage and HappyHour.ViewModels.MainPageViewModel.



Documentation - Conventions and diagnostics

Page 4 - Last modified on January 26, 2015 14:46

11 : Action INFO: Setting DC of HappyHour.Views.MainPage to HappyHour.ViewModels.MainPageViewModel.
12 : Action INFO: Attaching message handler HappyHour.ViewModels.MainPageViewModel to
                  HappyHour.Views.MainPage.
13 : ViewModelBinder INFO: Action Convention Not Applied: No actionable element for get_DrinkName.
14 : ViewModelBinder INFO: Action Convention Not Applied: No actionable element for set_DrinkName.
15 : ViewModelBinder INFO: Action Convention Not Applied: No actionable element for get_CanAskForIt.
16 : ViewModelBinder INFO: Action Convention Not Applied: No actionable element for SockItToMe.
17 : ViewModelBinder INFO: Binding Convention Not Applied: Element AskForIt did not match a property.

To save space, I’ve elided the portion of each message that reports the date, time, and the name of the class method that is
adding to the log:

Log1/16/2012 5:12:46 PM :  : Cocktail.DefaultDebugLogger:LogWriter : 

The line #10 tells us that Punch bound the MainPage to the MainPageViewModel. We know that already but it’s nice to see it
confirmed; the fact that it is available in the log means we could write tests or runtime checks to detect View binding failures at
runtime if we wished to do so.

The "DC" in "Setting DC of HappyHour.MainPage" is the DataContext. That’s important information. We want to know that
the MainPage is bound to the expected data source, the MainPageViewModel.

The binding problems are apparent in the subsequent messages … if we know what we are looking for. 

We can ignore most of the "Action Convention" messages. Actions are behaviors associated with UI triggers such as button
clicks and mouse-overs. We don’t expect UI triggers to be bound to the ViewModel’s DrinkName or CanAskForIt properties so
we aren’t perturbed by messages that say "No actionable element for …" with respect to these properties.

However, we should be concerned that no "actionable element" was found for SockItToMe. We expect that
MainPageViewModel method to be called when the user clicks the button.

The Binding Convention message "Element AskForIt did not match a property" is the other side of that coin. It tells us that a
UI element named "AskForIt" (the button) was not bound to a member of the ViewModel.  When you program in the style we
recommend, most of your UI element names ("x:Name" attribute values) should be bound to a ViewModel member.  A named
element that is not bound is worth investigating.

Try to keep the noise down by eliminating unnecessary element names. You don’t want to be distracted by elements that aren’t
supposed to be bound. That’s why we removed the name "LayoutRoot" from the generated <grid> xaml.

We are also missing some messages. In general, the public members of a ViewModel are bound to a View element. We
should have seen confirmation of a binding to MainPageViewModel.DrinkName. We didn’t and that fact should lead us to search
the View’s XAML for a control that was supposed to be bound to the DrinkName property (the TextBox as we know). Either the
"x:Name" wasn’t specified (the culprit in this case) or the value doesn’t match the ViewModel property name.

Let’s undo the damage and see what the log says when the application is configured properly.

1. Restore the TextBox x:Name attribute in MainPage.

XAML<TextBox x:Name="DrinkName" BorderThickness="1" BorderBrush="Blue" Margin="4" />

2. Restore the AskForIt method name in MainPageViewModel.

C#public void AskForIt() 

3. Build and run [F5].

The application should work properly again. Enter one letter and click the button. When we check the Output window we
see:

Log10 : ViewModelBinder INFO: Binding HappyHour.Views.MainPage and HappyHour.ViewModels.MainPageViewModel.
11 : Action INFO: Setting DC of HappyHour.Views.MainPage to HappyHour.ViewModels.MainPageViewModel.
12 : Action INFO: Attaching message handler HappyHour.ViewModels.MainPageViewModel to
                  HappyHour.Views.MainPage.
13 : ViewModelBinder INFO: Action Convention Not Applied: No actionable element for get_DrinkName.
14 : ViewModelBinder INFO: Action Convention Not Applied: No actionable element for set_DrinkName.
15 : ViewModelBinder INFO: Action Convention Not Applied: No actionable element for get_CanAskForIt.
16 : ViewModelBinder INFO: Action Convention Applied: Action AskForIt on element AskForIt.
17 : ViewModelBinder INFO: Binding Convention Applied: Element DrinkName.
18 : ActionMessage INFO: Action: AskForIt availability update.
19 : ActionMessage INFO: Action: AskForIt availability update.
20 : ActionMessage INFO: Action: AskForIt availability update.
21 : ActionMessage INFO: Action: AskForIt availability update.



Documentation - Conventions and diagnostics

Page 5 - Last modified on January 26, 2015 14:46

22 : ActionMessage INFO: Invoking Action: AskForIt.

Message #16 confirms that the AskForIt method is now bound to a UI element (the button) named "AskForIt". Message #17,
"Binding Convention Applied", confirms that a UI element called "DrinkName" was bound to a matching property.

Messages #18 through #21 were triggered by updates to the DrinkName property which raises the PropertyChanged event on
the CanAskForIt guard property. The messages both indicate that activity occurred and relate it to the "AskForIt" UI element.
That means Punch picked up the fact that the CanAskForIt property governs the enabled state of the AskForIt button.

Finally, message #22 tells us that the "AskForIt" button invoked its associated action, which is to say, the button-click
triggered the ViewModel’s AskForIt method and popped up a MessageBox.

Last call
We learned a little more about how the conventions work (and we expand upon convention binding below). Mistakes are always
possible, especially when you use "magic strings" to specify ViewModel property names as you must when working in XAML;
you're vulnerable in this respect whether you use conventional or explicit data binding.

Fortunately, Punch logs binding behavior to the Visual Studio Output window. Understanding the logs can help you detect
and repair binding mistakes ... which could make you more comfortable with the convention binding "magic".

Ask the Mixologist
This lesson is finished. Feel free to move on directly to the next one. This Ask the Mixologist section is an optional digression
from the lesson’s main course to related points of interest.

Punch or Caliburn?

Throughout this lesson we referred to Punch as the agent behind the convention-based binding. It would be more precise to
say that Caliburn Micro is the agent. Caliburn Micro is a key component of the ensemble that is Punch ... one of several
components. Rather than confuse you by calling out each one individually, we'll just say that "Punch is doing it." When we think
it's important to identify the specific contributing technology, we'll be sure to do so.

How did it bind MainPage to MainPageViewModel?

In Punch we usually start with a ViewModel and expect to find the corresponding View class by name. The stock naming
convention anticipates most of the common English language pairings.
The most common convention expects the view name to end in "View":

<BaseName>ViewModel => <BaseName>View

Examples:

• CustomerViewModel => CustomerView 
• AccountViewModel => AccountView 

But the convention also accommodates synonyms for "View" such as "Page", "Form" and "Screen":

<BaseName><ViewSynonym>ViewModel => <BaseName><ViewSynonym>

Examples:

• CustomerPageViewModel => CustomerPage 
• CustomerFormViewModel => CustomerForm
• CustomerScreenViewModel => CustomerScreen

We’re using this view-synonym convention in our tutorial to match MainPageViewModel to MainPage. 

View/ViewModel naming conventions are much richer than described here.

What are the naming conventions?

Learn more about naming conventions and how to change them:

• "All about Conventions"
• "View/ViewModel Naming Conventions"
• "Using the NameTransformer"
• "Handling Custom Conventions"
• A CodePlex discussion post that reveals how View/ViewModel binding conventions were determined.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/cocktail-tutorial-data-in-listbox
http://caliburnmicro.codeplex.com/wikipage?title=All%20About%20Conventions
http://caliburnmicro.codeplex.com/wikipage?title=View%2fViewModel%20Naming%20Conventions
http://caliburnmicro.codeplex.com/wikipage?title=Using%20the%20NameTransformer
http://caliburnmicro.codeplex.com/wikipage?title=Handling%20Custom%20Conventions
http://caliburnmicro.codeplex.com/discussions/258997


Documentation - Conventions and diagnostics

Page 6 - Last modified on January 26, 2015 14:46

These resources cover some basic material but quickly go deep into details and options in a way that may seem
overwhelming. Fortunately, you don’t need to know any more right now than what we’ve shown you. We will drill into the
advance conventions in more leisurely fashion in future lessons.

Can I specify some data bindings explicitly?

Absolutely!  Implicit convention-based binding exists to simplify tedious repetitive binding tasks. Use it when you think Punch
should know what you mean. But you can always take the wheel and drive yourself. Here is a rewrite of the “DrinkName”
TextBox with explicit data binding.

XAML<TextBox x:Name="DrinkName" Text="{Binding DrinkName,
                Mode=TwoWay,
                NotifyOnValidationError=True,
                ValidatesOnNotifyDataErrors=True,
                TargetNullValue='Enter a drink name'}"
         Margin="0,8,0,8" />

We went the explicit route because we wanted to specify a TargetNullValue to display when the bound property (DrinkName)
is null, an option not available with the stock conventions. Here’s what it looks like at runtime.

Notice that the button is not enabled. The DrinkName property is actually null; the binding is painting “Enter a drink name”
into the TextBox; it’s not really there. You have to erase that text and type in a new value to enable the button and display the
message.

This user experience is not good in our sample but we can imagine other circumstances in which the TargetNullValue binding
property could be useful. We’re sure you’ll find reasons to bind a control in an unconventional manner. It’s good to know that
you can and that your explicit bindings always trump the conventional implicit bindings. 

How is the AskForIt method bound to the button?

In many other MVVM frameworks, you’d have to create some form of “RelayCommand” in your ViewModel and bind to it
explicitly in the View with attached properties. The “RelayCommand” in turn would delegate to the CanAskForIt and AskForIt
members pretty much as we wrote them.

We had to write CanAskForIt and AskForIt … that’s the business logic that only we developers can know.  But we don’t need
any of the other ceremony in a Punch application. There’s nothing superfluous in the ViewModel; the XAML exhibits the same
“x:Name” convention binding we use for data properties:

XAML<Button x:Name="AskForIt" Content="Ask for it" Margin="0,0,0,4" />

Behind the scenes, Caliburn applies its conventions to bind the button to the guard property (CanAskForIt) and action method
(AskForIt).  The mechanism is called an Action and it’s much more powerful than what you see here. Learn more about Actions
in the Caliburn documentation.

Can I log my own messages?

Sure you can … with the Punch logging facilities.

Add a call to Cocktail.LogFns.DebugWriteLine in the AskForIt method.

C#public void AskForIt()
{
    Cocktail.LogFns.DebugWriteLine("Called AskForIt");
    MessageBox.Show(
       string.Format(CultureInfo.CurrentCulture,
       "One {0}, coming right up!", DrinkName.Text)); // don't do this in real app
}

http://caliburnmicro.codeplex.com/wikipage?title=All%20About%20Actions


Documentation - Conventions and diagnostics

Page 7 - Last modified on January 26, 2015 14:46

Run it and click on the button. You should see a line such as the following at the bottom of the Output window.

Log27 : ... HappyHour.ViewModels.MainPageViewModel:AskForIt: Called AskForIt

Debug logs do not appear in Release builds

The logs are quite verbose. You probably don’t want all of that logging activity slowing down your application. Fortunately,
the Punch logging class in use here is called the DefaultDebugLogger for a reason: it only writes the logs in a Debug build. In
Release builds, the log messages are ignored.

The Cocktail.LogFns methods that begin Debug… only apply to Debug builds; its Trace… methods are effective in all builds.

You can filter log writing and enable some or all logging in Release builds if you wish. Learn how in the Punch
documentation; such customizations are out of scope for this tutorial.


