
Documentation - Add a custom DbContext

Page 1 - Last modified on October 28, 2013 14:39

Contents

• You may not need a custom DbContext
• Write a custom DbContext
• Add the DataSourceKeyName attribute
• Add a constructor with a connection parameter
• Ignore the EntityAspect type
• Specify the DbSets
• Initialize the database (optional)
• Multiple DbContext classes
• No DbContext in Silverlight and mobile projects
• You write it, DevForce calls it
• Learn more

Add a custom Entity Framework DbContext to your model when mapping entities to database objects with EF's fluent
interface or configuring other aspects of model behavior that are specific to EF.

Entity Framework uses a DbContext to respond to client queries and save entity data to the database. DevForce uses a
DbContext at build time to find the metadata for your model and again at runtime in the Entity Server when querying and saving.

The typical Entity Framework developer writes a class that inherits from DbContext. Inside that custom class may be code to 

• map entity classes to database objects using EF's Fluent API
• initialize a generated development database
• define the DbSets that perform create, read, update, and delete operations; EF uses the types discovered in these DbSets

to identify the entity types within the model managed by this DbContext.

You may not need a custom DbContext
You may not need to write a custom DbContext if you've written a custom EntityManager ... as most people do. DevForce uses
its own DbContext at runtime if you don't write one. 

You won't need a custom DbContext if you've met all of your mapping needs for the entity classes you've written through
a combination of naming conventions and mapping attributes and you don't need any other Entity Framework DbContext
customizations.

You can have both a custom EntityManager and a custom DbContext. But you may not need your own DbContext just yet and
it's easy to add one later.

Write a custom DbContext
You may decide to write a DbContext in order to map entities to the database using Entity Framework's Fluent API. With the
Fluent API you can specify mappings that you can't define with data annotations alone. Some folks simply prefer the Fluent
API. Control over database initialization is a popular second reason to write a custom DbContext.

A few rules and suggestions for writing your custom DbContext:

• Add a DataSourceKeyName attribute to the class
• Write a constructor with a connection parameter
• Always override the OnModelCreating method and tell EF to ignore the EntityAspect type.
• Add DbSet definitions for every root entity in your model.
• Consider adding mappings to the OnModelCreating method using the Fluent API.
• Consider adding database initialization code to your constructor.

These points are illustrated in the following example and then discussed in more detail below:

C#using System.Data.Entity;
using IdeaBlade.EntityModel;
namespace CodeFirstWalk
{
    [DataSourceKeyName("CodeFirstWalk")]
   class ProductDbContext : DbContext // leave it internal; no one calls it except DevForce
   {
       public ProductDbContext(string connection = null) : base(connection)
        {
           // Do not use in production; for early development only
           Database.SetInitializer(
               new DropCreateDatabaseIfModelChanges<ProductDbContext>());
        }

http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext(v=VS.103).aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext(v=VS.103).aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-generate-metadata
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://msdn.microsoft.com/en-us/library/hh295844(v=VS.103).aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext.database(v=VS.103).aspx
http://msdn.microsoft.com/en-us/library/gg696460(v=VS.103).aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-classes
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-classes
http://msdn.microsoft.com/en-us/library/hh161541%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/gg197525%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/hh295844(v=VS.103).aspx


Documentation - Add a custom DbContext

Page 2 - Last modified on October 28, 2013 14:39

       protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            modelBuilder.Ignore<EntityAspect>(); // Always ignore EntityAspect
           modelBuilder.Entity<Category>().ToTable("Category"); // otherwise EF assumes the table is called "Categories"
           modelBuilder.Entity<Product>().ToTable("Product"); // otherwise EF assumes the table is called "Products"
       }
       //public DbSet<Category> Categories { get; set; } // not necessary
       //public DbSet<Product> Products { get; set; } // not necessary
       public DbSet<Supplier> Suppliers { get; set; }
    }
}

You may need to add a project reference to System.Data.Entity.

Add the DataSourceKeyName attribute
Every model has a DataSourceKeyName. DevForce uses that name to find the associated database connection string. If
DevForce and Entity Framework can't find a connection string with that name, Entity Framework typically creates a database
with that name.

You should specify the DataSourceKeyName using the attribute.

C#[DataSourceKeyName("CodeFirstWalk")]
public class ProductDbContext : DbContext { ... }
If you don't apply the attribute, DevForce uses the name of your DbContext class (e.g., "ProductDbContext") as the
DataSourceKeyName. The class name is rarely a good database or connection string name and you don't want that name
changing every time you change the class name.

The DataSourceKeyName must not include spaces or underscores ("_"). 

Add a constructor with a connection parameter
We strongly recommend that you add a constructor that takes a string connection parameter as we did in the example:

C#[DataSourceKeyName("CodeFirstWalk")]
public class ProductDbContext : DbContext
{
   public ProductDbContext(string connection) : base(connection) { ... }
    ...
}
In fact, you must add such a constructor if you annotate the class with the DataSourceKeyName attribute.

Technically, you don't have to write a constructor at all. A DbContext can have an implicit parameterless constructor and you
only have to write a constructor if you have special logic to run when an instance is created.

If you omit the constructor or if your constructor has no parameters, DevForce lets Entity Framework figure out how to find
and connect to the database. While this works, it is rarely desirable.

When you provide a constructor with a string parameter, DevForce can build a string that contains database connection
information and will pass that string into the constructor. We cover how DevForce builds that string elsewhere. 

Ignore the EntityAspect type
All DevForce AOP entities have an EntityAspect property through which you gain access to your entity’s internal entity
capabilities. You may or may not write that property in your entity source code, but it’s there after DevForce rewrites the class
with DevForce entity infrastructure.

Entity Framework discovers this EntityAspect property as it investigates the types in your entity model. EF sees that the
property returns an EntityAspect type which it assumes is an entity type. It’s not an entity type and it fails validation as an entity
type because it doesn’t have a key. You'll get a build error message that says

EntityType 'EntityAspect' has no key defined. Define the key for this EntityType.

Someone must tell EF to ignore the EntityAspect and all properties that return that type. The DevForce default DbContext
does it for us automatically. But because we are writing own DbContext, we must tell EF to ignore it through the Entity
Framework Code First Fluent API while overriding DbContext’s OnModelCreating method.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-set-database-connection-string#HDataSourceKeyNameandthenameoftheconnectionstring
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-set-database-connection-string
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-set-database-connection-string
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-set-database-connection-string
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-classes
http://msdn.microsoft.com/en-us/library/hh295844(v=VS.103).aspx


Documentation - Add a custom DbContext

Page 3 - Last modified on October 28, 2013 14:39

You are probably already overriding the OnModelCreating() method if you are writing a custom DbContext. We did that in
the example above when we mapped two entity types to unconventional table names.

While you're implementing OnModelCreating(), be sure to add the "ignore" instruction as shown here:

C#protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
    modelBuilder.Ignore<EntityAspect>();
   // ...
}

Specify the DbSets
The Entity Framework DbContext knows which entities to include in the model it manages by examining the properties that
return DbSet(Of TEntity).

If you were using this DbContext directly, you would probably add a DbSet definition for almost every type in your model.
But you won't be using this DbContext. You'll be using an EntityManager. So you can get away with specifying the minimum
number of DbSets necessary for EF to identify all of the desired model types.

EF automatically includes in the model both the entity type mentioned in the DbSet definition and every entity type
returned by that type. The entity type discovery process is recursive so you only need to mention the "root" types.

While there is no harm in mentioning the other entity types, in the example we only had to mention Supplier because the
Supplier.Products navigation property returns Product entities and the Product entity has a Category navigation. All types in our
model are reachable from Supplier making it the one "root" entity in the model.

Initialize the database (optional)
Notice the DropCreateDatabaseIfModelChanges<T> object passed into the static Database.SetInitializer method call.

C#public ProductDbContext(string connection = null) : base(connection)
{
   // Do not use in production; for early development only
   Database.SetInitializer(
               new DropCreateDatabaseIfModelChanges<ProductDbContext>());
}

That’s an initialization strategy object that tells EF to re-create the database if it detects model changes.  

Here are the stock initialization strategies that are useful in early development when you don't care about the database schema
and data. All of them are dangerous in production code:

C#//Default strategy: creates the DB only if it doesn't exist
Database.SetInitializer(new CreateDatabaseOnlyIfNotExists<ProductDbContext>());
//Recreates the DB if the model changes but doesn't insert seed data.
Database.SetInitializer(new RecreateDatabaseIfModelChanges<ProductDbContext>());
//Always recreates the DB every time the app is run.
Database.SetInitializer(new DropCreateDatabaseAlways<ProductDbContext>());

You can create your own initialization strategy by inheriting from one of these and overriding the Seed method.

Never enable any of these database initialization strategies in production code. Never enable them if there is a chance that the
Entity Framework could destroy potentially valuable data ... even valuable test data.

Entity Framework (re)creates a database on SQL Server Express by default. You can change that default.

You can stop Entity Framework from creating or re-creating the database - and should do so in production - by calling the
Database.SetInitializer static method with a null argument. One possible place to do that is in the constructor as follows:

C#public ProductDbContext(string connection) : base(connection)
{   
    Database.SetInitializer(null); // Never create a database
}

Multiple DbContext classes
You can write more than one DbContext. You might have multiple DbContexts if you sourced entity data from multiple
databases; each DbContext can only connect with a single database.

http://msdn.microsoft.com/en-us/library/gg696460(v=vs.103).aspx|rel="_blank"
http://msdn.microsoft.com/en-us/library/gg679461%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/gg679461%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/gg679410%28v=VS.103%29.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/advanced-database-connections#HLivingwithoutSQLServerExpress


Documentation - Add a custom DbContext

Page 4 - Last modified on October 28, 2013 14:39

You might have multiple domain models, each targeting a separate application module and serving a separate business
purpose. Although the domain models are different, the may store their entity data in the same database.

A DevForce EntityManager can hold entities sourced from multiple databases and multiple DbContexts. DevForce will use a
distributed transaction if an EntityManager is asked to save entities from different databases.

No DbContext in Silverlight and mobile projects
You add DbContext classes to .NET 4.5 projects, never to Silverlight and mobile projects. The DbContext is an Entity
Framework component. Entity Framework components are not defined in client-only technologies.

You share the source code for your entity classes with your client application, typically by linking to entity class files in the
full .NET model project(s). Remember to exclude all DbContext classes when linking to .NET model project files.  You can do
this using compiler directives (e.g., #if SILVERLIGHT) if you only need to exlude portions of a file, or by not including these
files in the client project.

You write it, DevForce calls it
If you have previous EF Code First, you are used to constructing a DbContext instance and using it to query and save entities.
You won't be doing that anymore; that's DevForce's job. The DevForce EntityServer discovers your DbContext class and uses it
on your behalf to perform Entity Framework tasks in response to client requests.

Learn more
Authoring a custom DbContext is not something we can cover adequately in the DevForce Resource Center.Please review
external sources, starting with Microsoft’s ADO.NET Entity Framework website, to learn more.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://msdn.microsoft.com/en-us/data/aa937723

