
Documentation - Custom entity base classes

Page 1 - Last modified on October 31, 2012 15:09

Contents

• Benefits of a base entity class
• An EntityBase skeleton
• What to put in EntityBase

• Custom validation
• EntityAspect
• EntityFacts

• An example EntityBase
• EntityBase in a separate assembly

A DevForce entity need not derive from a base class. But you are welcome to create a base class of your own and derive
some or all of your entities from that class.

It is not a violation of POCO principles to have a base class; it is a violation to require a base class.

We think there are good reasons to create your own base class and we'll suggest how you might do that in this topic.

Entity classes generated Database First derive from the IdeaBlade.EntityModel.Entity class ... which you cannot not use in
your Code First models. In future releases, these generated entities may no longer derive from Entity.

Benefits of a base entity class
Entities tend to have common capabilities, typically cross-cutting concerns such as your own validation protocol (e.g., your own
Validate method or properties such as CanDelete that indicate allowed and disallowed operations).

The DevForce AOP system injects common infrastructure into your classes without adding a base class. That infrastructure
is discovered by UI components at runtime but you can't refer to any of it yourself when writing your own code unless you cast
first. That's ugly and error prone.

It is often easiest to locate custom shared features in a base class.  DevForce is not allowed to use a base class for this
purpose. But you can; it’s your model.

An EntityBase skeleton
We recommend that you begin developing your model by writing an EntityBase class such as this one:

C#/// <summary>
/// My custom base class for all entity classes in my model.
/// It contains whatever I believe is useful across my entity classes.
/// </summary>  
/// <remarks>
/// An entity base class is optional. This is MY BASE class.
/// <para>
/// The base class is decorated with the ProvideEntityAspect attribute,
/// so CodeFirst infrastructure is also injected into sub-classes.
/// </para>
/// </remarks>  
[ProvideEntityAspect]
[DataContract(IsReference = true)]
public abstract class EntityBase {
   // Your code here
}

EntityBase is decorated with the DevForce ProvideEntityAspect attribute that identifies this class – and all of its subclasses –
as an AOP Entity class which should be rewritten. Applying the attribute here means you won’t have to apply it to each of your
derived business entity classes.

In fact, you can’t apply it to those classes; this attribute can only appear on one class in an inheritance chain.

EntityBase is abstract. You should never create an instance of it. Marking it abstract ensures that you won’t and also tells
Entity Framework Code First that you do not intend to map EntityBase to an object in the database.

Always apply the [DataContract(IsReference = true)] attribute. It is harmless if all of your derived entity classes consist
entirely of serialized public properties. But you'll need it on this base class if even one of your derived entity classes requires
explicit WCF DataContract configuration. 

http://drc.ideablade.com/xwiki/bin/view/Documentation/code%2Dfirst


Documentation - Custom entity base classes

Page 2 - Last modified on October 31, 2012 15:09

What to put in EntityBase
Add members to this base class that you want all entities to share. Make them public or protected as appropriate.

Custom validation

One popular addition is a custom Validate() method that you can call during save. Each derived class can override it to perform
its own validation logic. It might, for example, confirm that the entity can be added, modified, or deleted by the current user. 

C# /// <summary>
 /// Perform custom validation of this entity and add errors to the <see cref="validationErrors"/>
 /// </summary>
 public virtual void Validate(VerifierResultCollection validationErrors) { }

You might call Validate inside your EntityManager.Saving handler, once for each entity in the change-set. Each Validate adds
errors (if any) to the VerifierResultCollection. After iterating through all of the entities, if there are errors in the collection, the
Saving handler cancels the save and presents the errors collection to the UI.

EntityAspect

Some developers add a public EntityAspect property to make it easier to access the DevForce features made available through
the EntityAspect class

C# public EntityAspect EntityAspect { get { return null; } }
Weird rule alert!  We told you to put the ProvideEntityAspect attribute on your base class. If you follow our lead, you must
ensure that the EntityAspect property is not virtual. On the other hand, if you decide to ignore our recommendation and you
omit the  ProvideEntityAspect attribute on your base class, then the EntityAspect property must be virtual. Don't ask why.

We described how this works elsewhere. However, we don't like this approach because it encourages application developers to
work directly with the EntityAspect.EntityManager which we think is a bad idea. 

We do it frequently in our demos because it is easy. Demos do not always follow good practices.

We'd rather restrict EntityManager access to a designated component for that purpose ... a Repository or DataService perhaps.
In short, EntityAspect is a little too powerful to expose in this way. Remember that the entity class author can always obtain the
EntityAspect if she absolutely must, in either of these ways:

C#   ((IEntity) someCategory).EntityAspect.EntityState; // by casting
   EntityAspect.Wrap(someCategory).EntityState;       // by wrapping

Even this mode of access should be the rare exception.

EntityFacts

There is a middle ground between no access and complete access to EntityAspect. You can create a property returning a custom
object that exposes "the safe" members of EntityAspect. What "safe" means is entirely up to you. We provide one possible
answer called EntityFacts in the topic on EntityAspect in Code First.

An example EntityBase
Here is an example of an EntityBase class that conforms to our recommendations:

C#/// <summary>
/// My custom base class for all entity classes in my model.
/// It contains whatever I believe is useful across my entity classes.
/// </summary>   
[ProvideEntityAspect]
[DataContract(IsReference = true)]
public abstract class EntityBase {
   /// <summary>Get facts about this entity's current state.</summary>
   [NotMapped]
    [Bindable(false), Editable(false), Display(AutoGenerateField = false)]
   public EntityFacts EntityFacts
        {
           get { return _entityFacts ?? (_entityFacts = new EntityFacts(this)); }
        }
   private EntityFacts _entityFacts;
   /// <summary>
   /// Perform custom validation of this entity and add errors to the <see cref="validationErrors"/>

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityaspect
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entityaspect
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entityaspect#HEntityFacts


Documentation - Custom entity base classes

Page 3 - Last modified on October 31, 2012 15:09

   /// </summary>
   public virtual void Validate(VerifierResultCollection validationErrors) { }
}

You'll find an example EntityFacts class implementation in the topic on EntityAspect in Code First.

EntityBase in a separate assembly
You can put your EntityBase class in an assembly separate from the rest of your model.  This is commonly done when you have
multiple Code First models but wish to use a common base class with them all.

You should install the DevForce Code First NuGet package to the project holding the base class to ensure that the correct
assembly references are added and PostSharp MSBuild support is enabled.  

However, you don't need DevForce MSBuild support to be enabled.  To disable DevForce build support you can do either of
two things:

• Remove the DevForce.cf marker file - The DevForce build task will only start if the file is found.
• Edit the project file to remove the import of the IdeaBlade.DevForce.Common.targets file which injects the DevForce

EntityModelMetadataDeploy task into the build pipeline.


