
Documentation - EntityAspect in Code First

Page 1 - Last modified on September 14, 2012 18:10

Contents

• Access the EntityAspect
• Tell EF to ignore the EntityAspect type
• Explicit EntityAspect properties
• Don't add an EntityAspect property
• EntityFacts

How to access the EntityAspect from a DevForce AOP entity.

Access the EntityAspect
Code First, AOP entities, and the “POCO lifestyle” encourage you to write entities that appear free of infrastructure concerns.
This Category class is (almost) all business:

C#    [ProvideEntityAspect]
   public class Category
    {
       public int CategoryId { get; set; }
       public string CategoryName { get; set; }
    }

However, seasoned developers understand that they must regard such business objects as entities on occasion. It will become
important, for example, to know if a particular Category object has changed. 

Change tracking is an entity infrastructure concern. DevForce provides access to entity infrastructure by means of the
EntityAspect property. EntityAspect’s EntityState property indicates whether and how the entity has been changed.

You can plainly see that EntityAspect is not a property of the Category class as written. The post-build, re-written Category
class does have an EntityAspect property, but neither you nor the compiler can see it while writing your application. If you want
access to EntityAspect, you’ll have to get it in one of two ways:

1. By casting to IEntity:
C#  ((IEntity) someCategory).EntityAspect.EntityState; 

2. By wrapping:
C#  EntityAspect.Wrap(someCategory).EntityState;       

The cast works because every re-written AOP entity implements IdeaBlade.EntityModel.IEntity, an interface whose sole
member is the EntityAspect property.

The static Wrap(anyObject) method of the EntityAspect class can wrap any kind of object in an instance of EntityAspect. The
Wrap() method understands that AOP entities contain an EntityAspect and returns that inner EntityAspect. 

If the object passed as an argument to Wrap() does not implement IEntity, Wrap(someObject) returns a new EntityAspect
object whose Entity property returns the argument (someObject).

Tell EF to ignore the EntityAspect type
Skip this advice if you do not write your own DbContext. You must follow this advice if you write a DbContext.

All DevForce AOP entities have an EntityAspect property through which you gain access to your entity’s internal entity
capabilities. You may or may not write that property in your entity source code, but it’s there after DevForce rewrites the class
with DevForce entity infrastructure.

Entity Framework discovers this EntityAspect property as it reflects into the types in your entity model. EF sees that the
(injected) property returns an EntityAspect type which it assumes (by convention) is an entity type. Well EntityAspect is not an
entity type and it fails EF validation because it doesn’t have a key as an entity must.

Someone has to tell EF to ignore the EntityAspect and all properties that return that type. The DevForce default DbContext
does so automatically. If you only write an EntityManager and do not write your own DbContext, you don't have to worry
about this issue at all.

But if you do write your own DbContext, then you must tell EF to ignore it, using the Entity Framework Code First Fluent
API, by overriding DbContext’s OnModelCreating method as shown here:

C#protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
    modelBuilder.Ignore<EntityAspect>();
}

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityaspect
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitystate
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-dbcontext
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-classes
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-dbcontext
http://msdn.microsoft.com/en-us/library/hh295844(v=VS.103).aspx
http://msdn.microsoft.com/en-us/library/hh295844(v=VS.103).aspx


Documentation - EntityAspect in Code First

Page 2 - Last modified on September 14, 2012 18:10

Explicit EntityAspect properties
You may be comfortable casting or wrapping to access the EntityAspect. Some of us prefer readier access to EntityAspect ... or at
least readier access to some of the members of EntityAspect.

You can add an EntityAspect property to your entity class:

C#    [ProvideEntityAspect]
   public class Category
    {
      // ...
      public EntityAspect EntityAspect { get { return null; } }
    }

Now the compiler will let you write application code to access a category’s EntityAspect directly as you’ve done in the past.

C#  if (someCategory.EntityAspect.EntityState.IsAddedOrModified()) {...}

Don't worry about the "null" implementation. Later, while rewriting the Category class, DevForce AOP detects your
EntityAspect property and replaces your getter with an implementation returning the true, injected EntityAspect instance.

You might try to apply the NotMapped attribute to your EntityAspect property, hoping that doing so will relieve you of the
requirement to ignore EntityAspect in your DbContext (see above). Sorry ... that won't work. The NotMapped attribute tells
Entity Framework Code First to ignore the EntityAspect property. We need EF to ignore the EntityAspect type. On the bright
side, once EF learns to ignore the EntityAspect type, it will automatically ignore every property that returns EntityAspect.

Don't add an EntityAspect property
Now that we've shown you how to do add an EntityAspect property, we're going to ask you not to do that.

The obvious reason is that adding an EntityAspect property to every class is repetitive, tedious and error prone. You can
workaround that by writing your own base class and relocating the EntityAspect property there so all derived entity classes have
it.

C#   public class Category : EntityBase    { ... }
   public class Product : EntityBase    { ... }
   // ... more classes ...
    [ProvideEntityAspect]
    [DataContract(IsReference = true)]
   public abstract class EntityBase
    {
       // ...
       public EntityAspect EntityAspect { get { return null; } }
    }

People do that. We've done it in demos. 

But we strongly discourage it. In our opinion, EntityAspect provides too much access to the DevForce persistence
machinery. EntityAspect.EntityManager, for example, returns the EntityManager to which the entity is attached. With that
EntityManager you could call SaveChanges or RejectChanges or add event handlers or perform many other operations that have
sweeping effects beyond the scope of the entity in hand. 

Such operations really shouldn't be executed by entity classes or by direct consumers of entity classes. They should only be
executed in a few, reserved components such as a Repository, a Unit-of-Work, or a DataService. A code review should look for
references to EntityAspect and EntityManager to make sure those objects are only invoked in approved components.

This is our opinion, an opinion grounded in long experience. You are free to disagree ... and we've just shown you how to
proceed contrary to our recommendation. But we really hope you'll heed our advice and implement EntityFacts instead.

EntityFacts
Many of the EntityAspect members are harmless and useful both to authors of entity classes and to consumers of entity classes.
We recommend that you write a helper class that exposes the "helpful" members and hides the "harmful" ones. Let's call that
class EntityFacts.

If you wrote your own entity base class (as we suggest), you could add a property that returns EntityFacts.

C#[ProvideEntityAspect]
[DataContract(IsReference = true)]

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-base-classes
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-base-classes


Documentation - EntityAspect in Code First

Page 3 - Last modified on September 14, 2012 18:10

public abstract class EntityBase {
   /// <summary>Get facts about this entity's current state.</summary>
   [NotMapped]
    [Bindable(false), Editable(false), Display(AutoGenerateField = false)]
   public EntityFacts EntityFacts
        {
           get { return _entityFacts ?? (_entityFacts = new EntityFacts(this)); }
        }
   private EntityFacts _entityFacts;
   // ... more ...
}

Which members are "helpful" and which are "harmful". That's really up to you. That's why we don't ship an EntityFacts class
in DevForce. Here is an example that we've found helpful in our practice.

C#/// <summary>
/// Encapsulate access to facts from the DevForce <see cref="EntityAspect"/>.
/// </summary>
public class EntityFacts : INotifyPropertyChanged
{
   private readonly EntityAspect _entityAspect;
   public EntityFacts(object entity)
    {
        _entityAspect = EntityAspect.Wrap(entity);
        _entityAspect.PropertyChanged +=
            (s, args) => RaiseEntityFactsPropertyChanged(string.Empty);
    }
   public EntityState EntityState
    {
       get { return _entityAspect.EntityState; }
    }
   public bool IsNullEntity
    {
       get { return _entityAspect.IsNullEntity; }
    }
   public bool IsPendingEntity
    {
       get { return _entityAspect.IsPendingEntity; }
    }
   public bool IsNullOrPendingEntity
    {
       get { return _entityAspect.IsNullOrPendingEntity; }
    }
   public bool HasErrors
    {
       get { return _entityAspect.ValidationErrors.HasErrors; }
    }
   public EntityAspect.VerifierErrorsCollection ValidationErrors
    {
       get { return _entityAspect.ValidationErrors; }
    }
   protected internal EntityAspect EntityAspect
    {
       get { return _entityAspect; }
    }
   public void RaisePropertyChanged(string propertyName)
    {
        _entityAspect.ForcePropertyChanged(new PropertyChangedEventArgs(propertyName));
    }
   public event PropertyChangedEventHandler EntityPropertyChanged
    {
       add { _entityAspect.EntityPropertyChanged += value; }
       remove { _entityAspect.EntityPropertyChanged -= value; }
    }
   event PropertyChangedEventHandler INotifyPropertyChanged.PropertyChanged
    {
       add { EntityFactsPropertyChanged += value; }
       remove { EntityFactsPropertyChanged -= value; }
    }
   protected event PropertyChangedEventHandler EntityFactsPropertyChanged;
   protected void RaiseEntityFactsPropertyChanged(string propertyName)



Documentation - EntityAspect in Code First

Page 4 - Last modified on September 14, 2012 18:10

    {
       if (null == EntityFactsPropertyChanged) return;
        EntityFactsPropertyChanged(this, new PropertyChangedEventArgs(propertyName));
    }
}


