
Documentation - Add a custom EntityManager

Page 1 - Last modified on August 15, 2012 17:20

Contents

• Write a custom EntityManager
• Add constructors
• Model Discovery

Add a custom "domain-specific" EntityManager to your model to make querying easier.

DevForce entity model code generation creates a custom EntityManager class that derives from
IdeaBlade.EntityModel.EntityManager. This class has several constructors and a query property for every entity type in the
model.

The generated custom EntityManager is a great convenience to the application developer. But it's not strictly necessary. You
can get by using just the base DevForce EntityManager. When you need a query for Products, you can write:

C#  EntityQuery<Product> productsQuery = manager.GetQuery<Product>();

But most of us prefer to write ...

C#  var productsQuery = manager.Products;
... which you can do when the manager variable is an instance of your custom EntityManager class.

You may not want to have a custom EntityManager if you always encapsulate queries in a “Repository” or “DataSource”
class. Your repository is going to expose the convenience API anyway; internally you can use EntityManager.GetQuery(Of T)
expressions to get the job done. 

To be clear, as long as you've defined a custom DbContext you don't have to define an EntityManager even if we think it's a
good idea.

You must write a custom EntityManager if you don't write a custom DbContext. You can write one or the other or both. But
you must have a custom EntityManager or a custom DbContext.

Write a custom EntityManager
You write all model code yourself when you choose the "Code First" approach. You decide whether you will have one custom
EntityManager, multiple custom EntityManagers, or no custom EntityManagers. For each EntityManager that you write, you
decide which entity types should have query properties.

Here's a custom EntityManager for a model with the Category and Product entities.  

C#   using IdeaBlade.EntityModel;
   public class ProductEntities : EntityManager
    {
       public EntityQuery<Category> Categories { get; set; }
       public EntityQuery<Product> Products { get; set; }
    }

In this example, there is an auto-property returning an EntityQuery(Of TEntity) for each entity type in the model. DevForce
initializes these properties at runtime when constructing an instance of the ProductEntities manager.

You don't have to create a query property for every type in the model. You may prefer to omit query properties
that return subordinate types belonging to an Aggregate Root. Suppose that, in your design, Order entities have
OrderLineItems. You've decided that OrderLineItems shouldn't be queried directly; they should always be retrieved by
navigation from an Order instance. You want to discourage queries for OrderLineItems by omitting the query property
for OrderLineItems from your EntityManager's API. Of course you could always query for them if you had to by using an
EntityManager.GetQuery<OrderItem>() expression.

It's your model; it's your EntityManager

Add constructors
You can get by with no constructors at all. The DevForce base EntityManager class has a constructor with all optional
parameters; the example ProductEntities class is delegating to that constructor implicitly.

Most developers add constructors eventually. Certainly the most popular is a constructor that allows you to create an instance
of the EntityManager that does not immediately connect to the database.

C# public ProductEntities(bool shouldConnect) : base(shouldConnect) {}
 //... create an instance somewhere in the application ...
 var manager = new ProductEntities(shouldConnect: false); // offline

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/EntityManager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-generate-entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-dbcontext
http://domaindrivendesign.org/node/88


Documentation - Add a custom EntityManager

Page 2 - Last modified on August 15, 2012 17:20

 //... connect when it's time to connect ...
 manager.Connect();

A disconnected EntityManager is especially useful in automated test scenarios.

Someday you may want to have the same constructors that DevForce creates for a generated EntityManager. It's boiler-plate
code that looks like this for our ProductEntities example.

C##region Constructors
public ProductEntities(
    bool shouldConnect = true,
    string dataSourceExtension = null,
     EntityServiceOption entityServiceOption = EntityServiceOption.UseDefaultService,
    string compositionContextName = null)
     : base(shouldConnect, dataSourceExtension, entityServiceOption, compositionContextName) { }
public ProductEntities(EntityManagerContext entityManagerContext)
     : base(entityManagerContext) { }
public ProductEntities(
     EntityManager entityManager,
    bool shouldConnect,
    string dataSourceExtension = null,
     EntityServiceOption entityServiceOption = EntityServiceOption.UseDefaultService,
    string compositionContextName = null)
     : base(entityManager, shouldConnect, dataSourceExtension, entityServiceOption, compositionContextName) { }
public ProductEntities(EntityManager entityManager, EntityManagerContext entityManagerContext = null)
     : base(entityManager, entityManagerContext) { }
#endregion Constructors

You can copy and paste this code fragment, replacing the word "ProductEntities" with the name of your custom
EntityManager class, or download and use the code snippet that writes this for you.

Model Discovery
DevForce and Entity Framework must learn which types belong in your project's entity model. They learn by inspecting your
project and reflecting on its classes. 

If you do not write a custom DbContext, DevForce creates one dynamically, configuring that DbContext to discover entity
types based on the custom EntityManager(s) you write or the types defined in your project.

1. If you write only one EntityManager, DevForce enrolls every Code First type that it can find in the project.
2. If you write more than one EntityManager, DevForce finds all types mentioned in their EntityQuery<T> properties

and passes them to the dynamically created DbContext as "root" entities for analysis. Entity Framework will walk the
navigation paths that extend from these root entities to enroll related entity types.

If you write a custom DbContext, DevForce asks the Entity Framework to use your DbContext to discover which types belong
in the Code First model. The types in your EntityManager (if you have one) and the types in your project are not a factor in
determining the types in your entity model. Make sure that your application only requires types that Entity Framework will
discover with your DbContext.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-snippets
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-dbcontext

