
Documentation - Generate metadata

Page 1 - Last modified on April 06, 2015 16:52

Contents

• Two Steps to Metadata Generation
• Why Metadata
• Enable metadata generation with a .CF file
• Metadata file generation
• Metadata file and source control
• Metadata in Silverlight, Windows Store and Windows Phone projects
• The metadata generation process
• App.config & SQL Server Express
• Metadata on a build server

This topic explains why DevForce needs metadata, how you enable DevForce metadata generation, and how DevForce
generates metadata about your model from your entity classes, storing those metadata in an XML project file with an
".ibmmx" file extension.

A DevForce Code First model requires a companion entity metadata file that describes how the model works. This is an
XML file with an ".ibmmx" file extension. DevForce (re)generates the metadata file automatically when you change your
entity model classes. But only if you enable it.

Two Steps to Metadata Generation
(1) Enable metadata generation by adding the DevForce 2012 Code First NuGet package to your project.

The package adds the required assembly references IdeaBlade.Aop and PostSharp, as well as the "Code First marker file"
DevForce.cf, and modifies the MSBuild processing to add the EntityModelMetadataDeploy task.

(2) Build the project

The ".ibmmx" metadata file will be (re)generated when the project is built successfully, and added to the assembly as an
embedded resource.

You now know the only two things you have to do - perhaps the only things you need to know - about Code First metadata.
The balance of this topic explains metadata and metadata generation in more detail.

Documentation - Generate metadata

Page 2 - Last modified on April 06, 2015 16:52

Why Metadata
DevForce needs metadata about your entity model on the client as well as the server. Metadata tells DevForce which properties
are primary keys and whether they are generated by the database or by your client code. Metadata tells DevForce that the
Orders property in the expression, myCustomer.Orders, is a navigation property that should return a collection of a particular
customer's Order entities. Metadata tells DevForce that each of those Order entities has a CustomerId foreign key property with
the value of the parent customer key. So informed, DevForce can seek those orders in the entity cache and return them if found
or otherwise query for them. If it must issue a query, metadata tells DevForce how to compose that query on the client before
sending it to the EntityServer.

Notice that all of the metadata is about the entity model. None of it concerns how the data are stored in the database. None
of it relates to or depends upon the Entity Framework. DevForce does not require Entity Framework components on the client.
That is one reason DevForce entity classes can be compiled and consumed in Silverlight and mobile environments.

Enable metadata generation with a .CF file
DevForce (re)generates metadata only if the project includes a Code First marker file. The marker file can be any kind of file as
long as it has a ".cf" file extension. By convention the marker file is a text file named "DevForce.cf".

You can create it yourself or you can use the DevForce 2012 Code First NuGet package to add it for you.

The marker file is not used by DevForce at runtime and need not be deployed.

Metadata can be generated only from the .NET project containing the model. The generated metadata file, *.ibmmx, is then
linked into client projects as an embedded resource.

Metadata file generation
As a result of installing the DevForce Code First package, a DevForce MSBuild task, EntityModelMetadataDeploy, is added to
your .NET model project's build pipeline.

When you build a project with a Code First model and the build task detects the marker file, DevForce gathers metadata
about your model and outputs an “IdeaBlade Model Metadata” XML file (AKA “.ibmmx” file). You can think of the ".ibmmx"
file as a substitute for the conceptual entity metadata file in an EDMX.

"ibmmx" is an acronym for "IdeaBlade Model Metadata Xml"

The DevForce build process gives your metadata files their proper names and includes them as embedded resources of your
projects.

Because you may move files around on your own, it may be helpful to know the rules:

• The metadata file extension must be ".ibmmx". DevForce will search for metadata files by this extension only.
• The name of the generated metadata file will be the same as the DataSourceKeyName for the model. If your project

had a DbContext named ProductDbContext without a DataSourceKeyNameAttribute, the metadata file would be named
ProductDbContext.ibmmx. If you're using a DataSourceKeyNameAttribute named "CodeFirstWalk", then the metadata
file would be named CodeFirstWalk.ibmmx.

• The metadata file must be included in the project as an embedded resource.

Once created, an .ibmmx file will not be re-created until your model changes.

It is always safe to delete a metadata file and re-generate it in the next build. In fact, that can be a useful sanity check
when things seem amiss. The DevForce build process detects that the file is missing and re-generates it. If you don't see the new
".ibmmx" file, you know that metadata generation failed; you should look at the Visual Studio output window for messages that
explain why.

Metadata file and source control
The ibmmx metadata file is a generated file and is not editable. It is intimately tied to the model itself; if you change the model
and the ibmmx independently you will cause errors that could be very hard to explain or debug.

Yes, multiple people can evolve the model independently. But they have to share the ibmmx file. We recommend the
following procedure to all model developers:

• update the model from source control
• make your model changes
• build to regenerate the ibmmx
• update from source control again for safety

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/EDMX

Documentation - Generate metadata

Page 3 - Last modified on April 06, 2015 16:52

• if update changed anything, re-build to regenerate the ibmmx
• checkin both your model changes and the revised ibmmx

When using source control (as surely you do), please take care to prevent merging of the repository ibmmx with your working
copy of the ibmmx. Usually you can configure your source control system to treat an ibmmx file as a binary (non-merged) file
type.

A conflicted ibmmx file will fail at runtime and you cannot easily resolve the conflict by hand; don't try. If you encounter a
conflict, simply delete the ibmmx and re-generate it by re-building the project.

Metadata in Silverlight, Windows Store and Windows Phone projects
You need entity metadata in your client project but you don't generate metadata there.

Instead, you link to each metadata ".ibmmx" file in the full .NET project - just as you link to the entity class and
EntityManager(s) source code files. Then you build the model-cum-metadata in your client project which compiles the original
source code with reference to environment-specific assemblies.

DevForce will attempt to automatically link generated .ibmmx files to a client project, but as with code files, you may have to
manually set the file linkages if DevForce is unable to determine an appropriate linked project.

The linked .ibmmx files should have a Build Action of embedded resource in your client project.

Be sure to rebuild your client project whenever the metadata file changes. When the metadata file changes DevForce is
able to detect the change and automatically rebuild the .NET project holding the model, but can't do this for the linked project.
 To ensure that the client assembly contains an embedded resource for the modified .ibmmx file, always build it after making any
model changes.

The metadata generation process
DevForce relies on Entity Framework Code First to produce most of the metatadata. During the build, DevForce creates an
instance of your custom DbContext (or the DevForce DbContext if you didn't write your own) and extracts conceptual model
metadata from the DbContext's EDM. For this reason, your model project must reference the Entity Framework libraries
(Silverlight developers: see above).

Because Entity Framework validates your model at build time, model validation errors - typically mapping inconsistencies -
will surface as build errors. These errors are displayed in the Visual Studio Error List window.

The DevForce MSBuild task, EntityModelMetadataDeploy, writes its own messages to the Output window as it generates
metadata and writes the ".ibmmx" file.

To see these message, make sure you've configured Visual Studio to provide enough detail. The "MSBuild project build
output verbosity" should at least be "Normal". You can navigate to this setting in Visual Studio as follows: Tools | Options |
Projects and Solutions | Build and Run.

Open the Visual Studio Output Window and show the output from the "Build" process.

Your log messages will look something like these:

In this example, a connection string was not found, so the task writes an informational message alerting you to the convention
currently in place. See the topic on setting the database connection if you think it is important for metadata discovery to find
your existing database.
The most important lines are at the end of the output window where it tells you if metadata was created successfully and if the
ibmmx file was created or rewritten:

 Model metadata created for CodeFirstWalk
 Model metadata file '....\CodeFirstWalk.ibmmx' written for CodeFirstWalk.ibmmx

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-set-database-connection-string

Documentation - Generate metadata

Page 4 - Last modified on April 06, 2015 16:52

or

 Model metadata created for CodeFirstWalk
 Model metadata for CodeFirstWalk.ibmmx is unchanged

If you see something to the contrary, metadata generation failed. The explanation for the failure - and what to try next -
should appear in the Output window as well.

Note that if your project contains other compilation errors, the EntityModelMetadataDeploy task will not be run.

App.config & SQL Server Express
At build time when DevForce asks the DbContext for metadata, the Entity Framework will attempt to connect to the database
to obtain storage model metadata. DevForce doesn't need the storage information for its metadata file, so there are three
options you can choose from:

1. Have SQL Server Express installed and running ... OR ...
2. Set the Database.DefaultConnectionFactory for your preferred database provider ... OR ..
3. Add a configuration file (app.config or web.config) to your model project with a connection string for the

DataSourceKeyName of the model.

When DevForce constructs the DbContext at build time, it ensures that a database isn't created by setting an appropriate
database initialization strategy.

Metadata on a build server
We don't recommend regenerating the ibmmx file on your build server. The DevfForce EntityModelMetadataDeploy
MSBuild task will not successfully complete when running outside of Visual Studio. It will generate a warning message that the
Visual Studio project cannot be found. Although this warning is harmless and your existing ibmmx file is left untouched, it's
usually more efficient to disable metadata generation on your build server. You should build with the ibmmx metadata file(s)
checked into your source control system.

You can prevent metadata generation by setting the SkipDevForce MSBuild property. There are several ways to do this.

1. Add the following to the MSBuild command line:
/p:SkipDevForce=true

2. Create an IdeaBlade.Override.targets file containing the following:
XML<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <SkipDevForce>true</SkipDevForce>
 </PropertyGroup>
</Project>
The EntityModelMetadataDeploy task will look for this file in the same location as the
IdeaBlade.DevForce.Common.targets file.

You must not skip PostSharp processing on your build server!

Without PostSharp, your entities won't be enriched with the aspects required by DevForce and your application will not work.
 For more information on PostSharp on the build server, see here.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/advanced-database-connections#HLivingwithoutSQLServerExpress
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-set-database-connection-string
http://msdn.microsoft.com/en-us/library/gg679461(v=vs.103).aspx
http://doc.postsharp.net/build-server

