
Documentation - Code First

Page 1 - Last modified on March 28, 2016 18:51

Contents

• What is Code First?
• Entity Framework Code First
• DevForce Code First
• Your entity classes are DevForce entities
• DevForce AOP entities
• Basic Development Workflow
• Model Projects and Project References
• DevForce AOP classes vs. DevForce POCO classes
• Additional resources

DevForce developers can write their Entity Framework-based models in Code First style. In Code First you write your CLR
entity classes by hand and later map them to the corresponding database. DevForce makes class authoring easier by weaving
DevForce infrastructure into your classes using SharpCrafters’ PostSharp Aspect Oriented Programming (AOP) technology.

Code First is not supported in Windows 10 Universal apps at this time.

What is Code First?
Code First is a style of Entity Framework model development in which you build the entity model entirely in code. Code First is
one of three development styles supported by Entity Framework.

Database First
Derive entity definitions and entity-to-database mappings from database schema, store the definitions and mappings in an XML
file (the EDMX), and then generate .NET entity classes from the entity definitions in that EDMX.

Model First
Define entities in a “neutral” entity modeling language and store them in an EDMX file. You typically generate .NET entity
classes from the definitions in the EDMX as in Database first approach. Later, when ready to interact with a database, you map
the entity definitions to the database; the mappings are stored in the EDMX which becomes indistinguishable from an EDMX
build Database First.

Code First
Write and maintain .NET entity classes by hand. Do not use an EDMX to map the entity classes to a database. Use some
combination of convention and programmatic configuration instead.

"Code First" earned its name because it prioritizes development of entity classes. In Code First, you just write code. You
don’t run the Entity Framework visual design tool, neither to design entities (Model First) nor to map entities to an existing
database (Database First). You don’t have to create or update a database schema; Entity Framework Code First can generate a
temporary database for you that which may be adequate to your development needs for some time. There is no XML file – no
EDMX file – to represent your model and storage schemas.

Perhaps it should have been called Code Only. Its signature distinguishing characteristic is that you do everything in code;
there is no Entity Data Model (EDM).

Entity Framework Code First
"DevForce Code First" is technology that builds upon "Entity Framework Code First" (EF CF). DF2012 Code First support
requires Entity Framework version 5 or above, which you can obtain from NuGet here. The DevForce 2012 Code First NuGet
package automatically installs the EF 5 package if not already present. If the EF 6 package is already present, DevForce will
use that.

Microsoft’s Data Developer Center is a good place to learn about Entity Framework Code First. But everyone should begin
with Julie Lerman's short book about Entity Framework Code First. Also check out Julie’s 6 minute video introduction.

You will be using your EF Code First skills when you build DevForce entity models in Code First style. We won’t try to
explain the details of EF Code First development in our documentation. In fact, we typically assume that you have already added
EF Code First to your application project(s) and know how EF's Code First works.

Usually you can rely on EF Code First naming conventions to map most of your entity classes to the tables and columns in
your database. For example, you don’t have to do anything when there’s a "Name" column in the "Customer" table to match the
Name property of your Customer entity.

When your entity model classes and database schema are less perfectly aligned, you'll clarify their correspondences explicitly
with attribute annotations in your entity class code or by configuration with the Entity Framework Fluent API.

http://www.sharpcrafters.com/
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/Entity+Framework
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/EDMX
http://nuget.org/packages/EntityFramework
http://msdn.microsoft.com/en-us/data/aa937723
http://shop.oreilly.com/product/0636920022220.do
http://msdn.microsoft.com/en-us/data/hh134816
http://msdn.microsoft.com/en-us/library/hh161541%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/gg197525%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/hh295844(v=VS.103).aspx

Documentation - Code First

Page 2 - Last modified on March 28, 2016 18:51

However, the workflow for DevForce Code First development is a bit different so you’ll want to read more about that
workflow here in the DevForce Resource Center.

DevForce Code First
In Code First, you write.NET entity classes by hand.

You can use a tool to generate the initial version of those classes from database schema as described in the Code Second topic.
Subsequently, you maintain the class by hand.

Because you are writing the class by hand, you’ll want to write as little code as possible. Such a class could be as simple as
this Category entity:

C# [ProvideEntityAspect]
 public class Category
 {
 public int CategoryId { get; set; }
 public string CategoryName { get; set; }
 }

Notice that there’s no base class. Category has two properties – a primary key and a name – both auto-properties with no
explicit implementations.

There is one bit of noise – the ProvideEntityAspect attribute - that identifies Category as an entity class participating in the
DevForce entity management system.

Your entity classes are DevForce entities
Category is a full-fledged DevForce entity. Like all DevForce entities you can

• Use LINQ to query for Category entities and serialize them over a network.
• Modify one.
• Listen for changes when you set a property.
• Decorate its properties with stock or custom validation attribute and expect the DevForce validation system to apply the

requested validation checks on client and server.
• Add property interceptors as you would for DevForce generated entities.
• Ask a Category instance for its current EntityState
• Save a set of changed Category entities back to the database.

You can do anything with a Category entity that you can do with an entity DevForce generated from an EDMX.

"How can this be?" you ask. It looks nothing like the Category entity we might have generated from the Northwind database
using Database First. That generated class is 140 lines long and looks a bit like this:

C# /// <summary>The auto-generated Category class. </summary>
 [DataContract(IsReference=true)]
 [DataSourceKeyName(@"NorthwindIBEntities")]
 [DefaultEntitySetName(@"NorthwindIBEntities.Categories")]
 public partial class Category : Entity {
 // … snip …
 [Key]
 [Bindable(true, BindingDirection.TwoWay)]
 [Editable(true)]
 [Display(Name="CategoryID", AutoGenerateField=true)]
 [RequiredValueVerifier(ErrorMessageResourceName="Category_CategoryID")]
 [DataMember]
 public int CategoryID {
 get { return PropertyMetadata.CategoryID.GetValue(this); }
 set { PropertyMetadata.CategoryID.SetValue(this, value); }
 }
 // … snip …
 [Bindable(true, BindingDirection.TwoWay)]
 [Editable(true)]
 [Display(Name="CategoryName", AutoGenerateField=true)]
 [StringLengthVerifier(MaxValue=15, IsRequired=true,
 ErrorMessageResourceName="Category_CategoryName")]
 [DataMember]
 public string CategoryName {
 get { return PropertyMetadata.CategoryName.GetValue(this); }

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-second
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-linq-basics
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/create-modify-delete
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entity-events
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validation-predefined
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validation-add-custom-attributes
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validate
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/property-interceptors
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitystate
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/EDMX

Documentation - Code First

Page 3 - Last modified on March 28, 2016 18:51

 set { PropertyMetadata.CategoryName.SetValue(this, value); }
 }
 // … snip …
 }

The comparison isn’t entirely fair. Much of the material you see here in the generated entity is optional. Within the DevForce
EDM Designer property window you can disable generation of some or all of the attributes. You have long been able to take
control of DevForce T4 code generation by customizing the template.

On the other hand, we generate these attributes by default for good reason: most DevForce developers write client
applications that work directly with DevForce entities. These attributes make it faster and easier to write the UI of a business
application.

The Editable, Bindable and Display attributes are hints to the UI about how to bind the properties to visual controls and
present messages. The Verifier attributes specify validation rules that ensure input data integrity on both client and server. You’d
be pleased to have the DataMember attributes if you had to write your own utility to serialize Category entities.

You may want to add some of these attributes to your own Code First entity classes. The following is a reasonable update to
our Code First Category:

C# [ProvideEntityAspect]
 public class Category
 {
 [Bindable(true, BindingDirection.TwoWay)]
 [Editable(false)]
 [Display(Name="ID", AutoGenerateField=true)]
 [RequiredValueVerifier]
 public int CategoryId { get; set; }
 [Bindable(true, BindingDirection.TwoWay)]
 [Display(Name="Category Name", AutoGenerateField=true)]
 [StringLengthVerifier(MaxValue=15, IsRequired=true)]
 public string CategoryName { get; set; }
 }

Even with these additions, the handwritten class is much smaller than the generated class. Conspicuous among the remaining
differences:

Generated Category Handwritten Category

Inherits from DevForce Entity No base class

partial class definition Not a partial class

Properties are implemented with PropertyMetadata helper objects Auto-properties

 ProvideEntityAspect attribute adorns the class

DevForce no longer requires that Entity Framework-backed entities inherit from the DevForce Entity base class. In fact, your
handwritten Code First classes must not inherit from DevForce Entity.

DevForce entity class generation emits a partial class definition so you can keep your custom entity code in a separate file,
safely apart from the generated code file. The handwritten Code First class is all yours; you wouldn’t divide your Category
business logic among separate files without a compelling reason.

The generated PropertyMetadata helper objects are gateways to the DevForce entity infrastructure – persistence, change
notification, validation, property interception. You will still be using that infrastructure in your handwritten entity class … but
that infrastructure is made available in a different way.

DevForce AOP entities
The Category class at runtime is not exactly the class you wrote. DevForce took your compiled class and injected it with
DevForce entity infrastructure.

The build process was altered when you installed DevForce. There are new steps in the build pipeline that gather entity
metadata and apply that metadata to rewrite your entity classes using SharpCrafters’ PostSharp Aspect Oriented Programming
(AOP) technology.

Normal classes are untouched. But when DevForce sees a class decorated with the ProvideEntityAspect attribute – or sees a
class derived from a class decorated with that attribute – the class rewrite process kicks in.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/edm-designer-extension
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/edm-designer-extension
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/custom-code-generation-template
http://www.sharpcrafters.com/

Documentation - Code First

Page 4 - Last modified on March 28, 2016 18:51

The runtime result is a class that behaves like a generated entity class. Your source code remains the same; the DevForce
infrastructure is invisible. But under the hood, the rewritten class is implemented substantially the same way as the generated
entity with its PropertyMetadata helpers.

You can see the class’s runtime implementation by examining its parent assembly with a decompilation tool such as Reflector.

We’re not being sneaky. Our objective is to help you focus on the business logic of your entity class by hiding the
infrastructural concerns.

There is a lot of infrastructure to hide. DevForce application developers expect to program with rich entity classes on a
variety of .NET clients: Windows Forms, WPF, Silverlight, Windows Phone, and Windows 8 Metro.

DevForce entities are designed for distributed application UI scenarios with built-in support for querying, serialization and
transmission over a network, data binding, validation, reversible edits, caching, and property interception. These are capabilities
that cut across all entities. They aren’t particular to any one business purpose and are usually irrelevant to the developer who is
trying to understand and write the domain logic for an application. For example, you shouldn’t have to write property change
notification statements inside your property setters. You shouldn’t have to see how navigation properties (e.g., customer.Orders)
find their related entities in cache. Aspect Oriented Programming (AOP) is a great way to hide the details of such "cross cutting
concerns".

You write entity business logic like custom verifiers and property interceptors the same way you wrote them for generated
entity classes. AOP doesn’t change that. The only AOP attributes you have to know are the attributes that tell DevForce to
rewrite your class (ProvideEntityAspect and ProvideComplexAspect). You don’t create your own AOP attributes.

In fact you can’t write new PostSharp attributes under the license we provide with DevForce. You can write custom attributes
and do your own AOP programming under your own PostSharp license.

You retain all the functionality of a traditional DevForce entity even if though you can’t see the infrastructure in the source
code. You can still create the entity with "new". You can still access its infrastructural characteristics through its EntityAspect
property. You can still debug it and test it in isolation or in combination with other entities cached in an EntityManager.

Basic Development Workflow
One can easily become lost in details and miss the overall simplicity of the Code First approach. An overview of the developer's
workflow can offer perspective.

The path you take depends first on whether you are starting from scratch ("green field") or working with an existing database
("brown field").

Green Field Brown Field

Write AOP entity model classes Generate initial entity model from the database

Add a custom EntityManager

Add a custom DbContext (optional) Add a custom DbContext (optional)

Enable metadata generation Enable metadata generation

Set a database connection string(optional) Set a database connection string (required)

Run, review,and iterate entity model development Run, review,and iterate entity model development

The two paths are almost the same, differing mostly in how you get started.

Other topics in this Code First series cover the details of building DevForce AOP entities during Code First model
development.

Model Projects and Project References
Your Code First entity model can co-reside with other classes in your application or web project. That's often the practice in
demos and tutorials, but most developers prefer to keep the model in its own model project.

Whatever your design, the project hosting your entity model must have references to certain Code First and AOP libraries in
addition to the usual DevForce libraries.

Library Purpose

EntityFramework Entity Framework Code First support

System.Data.Entity EF 5 only - Entity Framework library you'll likely need if you define
a custom DbContext

PostSharp Performs AOP assembly re-write and injects DevForce infrastructure

http://www.reflector.net
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-classes
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-second
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-dbcontext
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-dbcontext
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-generate-metadata
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-generate-metadata
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-set-database-connection-string
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-set-database-connection-string
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-dbcontext
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-dbcontext

Documentation - Code First

Page 5 - Last modified on March 28, 2016 18:51

IdeaBlade.Aop DevForce AOP attributes and related components.

The DevForce 2012 Code First NuGet package installs these dependent assemblies for you.

This project requires the .NET 4.5 framework and above because it depends upon the Entity Framework. If you're building a
Silverlight or mobile application, you know that you will be creating a separate client project (preferably a corresponding client
model project) that references the environment-specific libraries.

Library Purpose

PostSharp Portable version of the library for Silverlight, WinRT, Windows
Phone and mobile environments. Performs AOP assembly re-write
and injects DevForce infrastructure

IdeaBlade.Aop.SL DevForce AOP attributes and related components for Silverlight
applications.

IdeaBlade.Aop.WinRT DevForce AOP attributes and related components for WinRT
applications.

IdeaBlade.Aop.WP8 DevForce AOP attributes and related components for Windows
Phone 8 applications.

As before, the DevForce 2012 Code First NuGet package installs these dependencies for you.

Code First support is provided in Windows Store and Phone applications as of DevForce version 7.2.0.

DevForce AOP classes vs. DevForce POCO classes
We close this topic by noting the difference between DevForce AOP entities and DevForce POCO classes.

They appear rather similar. You are both entity classes that you write by hand. You aspire to keep them as free of
infrastructure concerns as you can, striving to write them as "Plain Old CLR Objects", POCOs.

The critical difference is that AOP entity classes are Entity Framework classes. They are designed to be queried and saved
using the Entity Framework as both a mapping and data access layer.

DevForce POCO classes are not tied to the Entity Framework. You can populate POCO objects from any kind of data
source: in-memory objects, a web service, a Web API service, an OData service, a queue, a NoSQL database, pretty much
anything you can dream of.

Additional resources
• Code sample: Code First Walk (WPF)
• Code sample: Code First Tour (SL)
• Code sample: DevForce Windows Store with Code First
• Code sample: DevForce Windows Phone with Code First

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-classes#HInstallDevForceCodeFirstsupport
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-classes#HInstallDevForceCodeFirstsupport
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/POCO
http://wcf.codeplex.com/
http://www.odata.org/
http://en.wikipedia.org/wiki/NoSQL
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-code-first-walk
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-code-first-tour
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-windows-store-tour-code-first
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-windows-phone-tour-code-first

