Documentation - MVVM Light with DevForce (Silverlight)

Contents

¢ Problem
¢ Solution
¢ From File | New to DevForce Entity Model
¢ Create a DevForce model
 Install MV VM Light using NuGet
¢ Add the data service
e Write the ViewModel
¢ Modify the ViewModell.ocator

¢ Design the view
¢ See it Blend

* Prerequisites

Laurent Bugnion's MVVM Light is one of the popular frameworks for building MV VM-style applications. It's lightweight,
open-source, and you can find it here.

* Platform: Silverlight
¢ Language: C#, VB

* Download: MVVM Light with DevForce
You'll need to unblock the MV VM light .dlls. If you don't, VS will give you a friendly reminder to do so.

Problem

A number of DevForce customers have asked for some guidance on bringing DevForce and MV VM together.

Solution
The code sample, and companion video, illustrates:

* DevForce and MVVM Light working together

* Repository/DataService pattern

* Design data repository to facilitate view development with design tools
* Building a view in VS "Cider" design tool

For the best learning experience, we recommend you watch the video and follow along with the sample code of the
completed solution.

From File | New to DevForce Entity Model

Let's begin by creating a new project. First, select File | New | Project from the main menu in Visual Studio, and select the
DevForce Silverlight Application template. Name the solution "MvvmLightDemo".

Page 1 - Last modified on September 20, 2012 11:26

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/mvvm
http://galasoft.ch/mvvm/getstarted/
/df2012samples/DevForceWithMvvmLight.zip
http://www.youtube.com/embed/zwR0ioKwwIc
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/create-new-solutions-devforce-templates

Documentation - MVVM Light with DevForce (Silverlight)

r = — —— 1
MNew Project - : I‘ I M
Recent Templates l.NET Framework 4 - I Sort by: [Default Search Installed Templates P |
|
Installed Templates 5 -| & —
¥ ST, H +
X - g | DevForce Silverlight Application Visual C# Ll
4 Visual C# TRl d Creates a DevForce Silverlight Application
Windows R | and BOS
W DevForce Silverlight Business Application Visual C2
eb
Office
l Cloud DevForce Silverlight Business Application (Accent Theme) Visual C#
DevForce 2010
Extensibility | DevForce Silverlight Business Application (Cosmopolitan Theme) Visual C#
Mono for Android = 3
Reporting | DevForce Silverlight Business Application (JetPack Theme) Visual C#
SharePoint
Silverlight | DevForce Silverlight Business Application (Windows 7 Theme) Visual C#
Test d
WeE i DevForce WinForms Application Visual C&
Workflow '
Other Languages - TEEWE — — -
Other Project Types | DevForce n-Tier WinForms Application isua
Database 1
| b | DevForce WPF Application Visual C#
Online Templates -
Name: WhvmLightDemo
Location: chternphprojects - Browse... |
Solution name: WhvmlLightDemo Create directory for solution
|| Add to source control

I

Create a DevForce model

We'll add the entity model directly to our web and Silverlight projects in this example. This is a simplistic approach, and
for long term maintainability we recommend separate .NET and SL model projects to hold the model, but that's a lesson for
another time!

Right-click on the MvvmLightDemoWeb project and select Add | New Item. In the Add New Item dialog, you will find
the ADO.NET Entity Data Model under Data. We'll name ours Model.edmx and click Add. (You can also locate the template
quickly by simply typing "ADQO" into the Search Installed Templates field in the upper right of the dialog.)

Generate from the NorthwindIB database that is provided as part of the DevForce installation and accept defaults. We'll
include only the Customer table in this simple model. Once the wizard completes you'll see the DevForce-generated model in
the web project and a link to it in the Silverlight project.

Install MVVM Light using NuGet

We use the NuGet package manager to install MV VM Light. If you don't have NuGet installed you can directly download and
install MVVM Light, but we highly recommend using NuGet since it will simplify the process, and many other vendors are now
using NuGet too.

Right click on the MvvmLightDemo project and select "Add Library Package Reference ..." from the menu. Search for
"Mvvm Light", and click "Install" once found.

Page 2 - Last modified on September 20, 2012 11:26

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/edm-designer
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-generate
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-link-source-file#HLinking
http://nuget.org
http://galasoft.ch/mvvm/

Documentation - MVVM Light with DevForce (Silverlight)

r

Add Library Package Reference

Online

All

Kim Local Server

MNuGet official package source
Muget on IbShare

Kim MNuGet Feed

Search Results

Updates

Recent packages

Each package is licensed to you by its
owner. Microsoft is not responsible
for, nor does it grant any licenses to,
third-party packages.

e

=)

Ce

Installed packages Sort by: lMost Downloads A |

MVVM Light

igl]
The MVVM Light Toolkit is | Install |

a set of components hel..,

MVVMT4
T4 Templates for generating view models,
and views for WPF, Silverlight, Windows...

MVVM Light libraries only
The MVVM Light Toolkit is a set of
components helping people to get starte..,

| v light X |

Created by: Laurent Bugnion (GalaSoft)
Id: MvwmLight
Version: 3.0.2
Downloads: 2748
Rating:

View License Terms

Project Information
Report Abuse

The MVYM Light Toolkit is a set of
compeonents helping people to get started
in the Model-View-YiewModel pattern in
Silverlight, WPF and Windows Phone 7.1t is
a light and pragmatic framework that
contains only the essential components
needed,

(0 Viotes) Rate It

Dependencies:

No Dependencies

This will install the MVVM Light assemblies into the Silverlight project, add a "ViewModel" folder with MainvViewModel and
ViewModelLocator classes, and modify the application resources in the App.xaml to add the ViewModelLocator as a resource.

We'll discuss these more below.

Add the data service

Next we'll add a simple repository/data service to access our entity model. Add a code or class file to the MvvmLightDemo

Silverlight project and name it DemoDataService.

Add an IDemoDataService interface. Here only a LoadCustomers method is needed.

using System;

using System.Collections.Generic;

using IdeaBlade.EntityModel;

namespace MvvmLightDemo {

public interface IDemoDataService {
void LoadCustomers(

Action<Exception> fail = null);
}
}

Imports System

Imports System.Collections.Generic
Imports IdeaBlade.EntityModel
Namespace MvvmLightDemo
Public Interface IDemoDataService

End Interface
End Namespace

Action<IEnumerable<Customer>> success = null,

Sub LoadCustomers(Optional By Val success As Action(Of IEnumerable(Of Customer)) = Nothing,
Optional ByVal fail As Action(Of Exception) = Nothing)

Next add a DemoDataService class. This class will serve as the run time data service for this sample. It will be responsible for

querying all Customers using the EntityManager.

public DemoDataService() {
Manager = new NorthwindIBEntities();

}
public void LoadCustomers(

Action<Exception> fail = null) {
Manager.Customers

public class DemoDataService : IDemoDataService {

protected NorthwindIBEntities Manager { get; set; }

Action<IEnumerable<Customer>> success = null,

Page 3 - Last modified on September 20, 2012 11:26

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager

Documentation - MVVM Light with DevForce (Silverlight)

.OrderBy(c => c.CompanyName)
.ExecuteAsync(op => {
if (op.CompletedSuccessfully) {
if (null != success) {
success(op.Results);
}
} else {
if (null != fail) {
op.MarkErrorAsHandled();
fail(op.Error);
}

D;
}
}

Public Class DemoDataService
Implements IDemoDataService
Public Sub New()
Manager = New NorthwindIBEntities()
End Sub
Protected Property Manager() As NorthwindIBEntities
Public Sub LoadCustomers(Optional By Val success As Action(Of IEnumerable(Of Customer)) = Nothing, _
Optional By Val fail As Action(Of Exception) = Nothing)
Manager.Customers.OrderBy(Function(c) c.CompanyName).Execute Async(Sub(op)
If op.CompletedSuccessfully Then
If Nothing IsNot success Then
success(op.Results)
End If
Else
If Nothing IsNot fail Then
op.MarkErrorAsHandled()
fail(op.Error)
End If
End If
End Sub)
End Sub
End Class

Finally let's add a DesignDemoDataService class for design-time support. This service will be responsible for supplying design-
time data.

public class DesignDemoDataService : IDemoDataService {
public void LoadCustomers(
Action<IEnumerable<Customer>> success = null,
Action<Exception> fail = null) {
if (null != success) success(CreateDesignCustomers());
}
private static IEnumerable<Customer> CreateDesignCustomers() {
var custs = new List<Customer>();
/I First customer is for full detail customer design
custs.Add(
new Customer {
CustomerID = Guid.NewGuid(),
CompanyName = "The Design Width Company Name",
Address = "123 Main Street",
City = "Anytown",
ContactName = "Harry Fidurcci",
Phone = "(510) 555 1212 x10",
Country = "France",
}
);
//' 10 dummy customers for listboxes
var custCounter = 1;
while (custCounter <= 10) {
var cust = new Customer {
CustomerID = Guid.NewGuid(),
CompanyName = "Customer " + custCounter++,
Country = "USA"
fis
custs.Add(cust);

Page 4 - Last modified on September 20, 2012 11:26

Documentation - MVVM Light with DevForce (Silverlight)

}
return custs;
}
}

Public Class DesignDemoDataService
Implements IDemoDataService
Public Sub LoadCustomers(Optional ByVal success As Action(Of IEnumerable(Of Customer)) = Nothing, _
Optional By Val fail As Action(Of Exception) = Nothing)
If Nothing IsNot success Then
success(CreateDesignCustomers())
End If
End Sub
Private Shared Function CreateDesignCustomers() As IEnumerable(Of Customer)
Dim custs = New List(Of Customer)()
' First customer is for full detail customer design
custs.Add(New Customer With {.CustomerID = Guid.NewGuid(), _
.CompanyName = "The Design Width Company Name", .Address = "123 Main Street", _
.City = "Anytown", .ContactName = "Harry Fidurcci", _
Phone = "(510) 555 1212 x10", .Country = "France"})
' 10 dummy customers for listboxes
Dim custCounter = 1
Do While custCounter <= 10
Dim cust = New Customer With {.CustomerID = Guid.NewGuid(), _
.CompanyName = "Customer " & custCounter, .Country = "USA"}
custCounter += 1
custs.Add(cust)
Loop
Return custs
End Function
End Class

We've now got a simple data service providing LoadCustomers support at both design and run time. Now let's write
something to use it.

Write the ViewModel
A class called MainViewModel was created for us when we added MVVM Light. We'll add our own properties and logic to it.

First, let's make sure we've got the right usings (or Imports) statements:

using System;

using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Ling;

using GalaSoft.MvvmLight;

Imports System

Imports System.Collections.Generic
Imports System.Collections.ObjectModel
Imports System.Linq

Imports GalaSoft.MvvmLight

Our view will display Customers, a status message, and detail on each selected Customer. We'll add these properties to the
ViewModel so the view can bind to them:

public ObservableCollection<Customer> Customers { get; private set; }
private string _message;
public string Message
{
get { return _message; }
set { _message = value; RaisePropertyChanged("Message"); }
}
private Customer _currentCustomer;
public Customer CurrentCustomer
{
get { return _currentCustomer; }
set { _currentCustomer = value; RaisePropertyChanged("CurrentCustomer"); }
}
Private privateCustomers As ObservableCollection(Of Customer)

Public Property Customers() As ObservableCollection(Of Customer)
Get

Page 5 - Last modified on September 20, 2012 11:26

Documentation - MVVM Light with DevForce (Silverlight)

Return privateCustomers
End Get
Private Set(ByVal value As ObservableCollection(Of Customer))
privateCustomers = value
End Set
End Property
Private _message As String
Public Property Message() As String
Get
Return _message
End Get
Set(By Val value As String)
_message = value
RaisePropertyChanged("Message")
End Set
End Property
Private _currentCustomer As Customer
Public Property CurrentCustomer() As Customer
Get
Return _currentCustomer
End Get
Set(By Val value As Customer)
_currentCustomer = value
RaisePropertyChanged("CurrentCustomer")
End Set
End Property

We also want to inject a data service into the ViewModel when constructed, so let's remove the default constructor generated
for us and add a constructor which accepts an IDemoDataService.

private IDemoDataService _dataService;
public MainViewModel(IDemoDataService dataService)
{

_dataService = dataService;
}

Public Sub MainViewModel(ByVal dataService As IDemoDataService)
_dataService = dataService
End Sub

We also want to initialize and load our data when the constructor is called, so let's also add a call to the LoadCustomers
method on our data service, along with "success" and "failure" callbacks. These will be called based on whether the load
succeeds or fails.

public MainViewModel(IDemoDataService dataService)
{
_dataService = dataService;
Customers = new ObservableCollection<Customer>();
Message = "... Loading ...";
_dataService.LoadCustomers(CustomersLoaded, CustomerLoadFailed);

}

private void CustomersLoaded(IEnumerable<Customer> customers)
{ foreach (var customer in customers)
{ Customers.Add(customer);
}CurrentCustomer = customers.FirstOrDefault();
Message = "Customers loaded.";
[})rivate void CustomerLoadFailed(Exception except)
{ Message = "Customer Load Failed: " + except.Message;

}

Public Sub New(By Val dataService As IDemoDataService)

_dataService = dataService

Customers = New ObservableCollection(Of Customer)()

Message = "... Loading ..."

_dataService.LoadCustomers(AddressOf CustomersLoaded, AddressOf CustomerLoadFailed)
End Sub

Private Sub CustomersLoaded(ByVal customers As IEnumerable(Of Customer))

Page 6 - Last modified on September 20, 2012 11:26

Documentation - MVVM Light with DevForce (Silverlight)

For Each customer In customers
Customers.Add(customer)
Next customer
CurrentCustomer = customers.FirstOrDefault()
Message = "Customers loaded."
End Sub
Private Sub CustomerLoadFailed(ByVal except As Exception)
Message = "Customer Load Failed: " & except.Message
End Sub

Modify the ViewModelLocator

The ViewModelLocator is another class auto-generated when you added the MVVM Light package. We've made a few changes
to make the "_main" variable non-static, and added a variable for our "_dataService". Here in the locator's constructor is
where we've moved the check for DesignMode, and we've added logic to construct either our DesignDemoDataService or
DemoDataService as appropriate. We pass this service along when we construct the MainViewModel.

private MainViewModel _main;
private IDemoDataService _dataService;
public ViewModelLocator()
{
if (ViewModelBase.IsInDesignModeStatic)
{

_dataService = new DesignDemoDataService();

else
{
_dataService = new DemoDataService();
1
_main = new MainViewModel(_dataService);

}

Private _main As MainViewModel
Private _dataService As IDemoDataService
Public Sub New()
If ViewModelBase.IsInDesignModeStatic Then
_dataService = New DesignDemoDataService()

Else
_dataService = New DemoDataService()

End If
_main = New MainViewModel(_dataService)
End Sub

The MVVM Light installation also added the locator as an application resource to our App.xaml.
<Application.Resources>

<vm:ViewModelLocator x:Key="Locator" d:IsDataSource="True" />
</Application.Resources>

Design the view

First, to tie our view to our view model, in the MainPage.xaml we set the DataContext for the view to the Main property of the
locator.

IDataContext:"{Binding Source={StaticResource Locator}, Path=Main }"

Next we create a simple grid layout with three rows. We'll add a title, and a TextBlock bound to the Message property we
created on our MainViewModel:

<TextBlock Name="textBlock1" Text="Mvvm Light Demo" Grid.ColumnSpan="2" FontSize="40" TextAlignment="Center" />
<TextBlock Grid.Row="2" Name="textBlock2" Text="{Binding Path=Message }" Margin="8,0,0,0" />

The second row will contain another grid, holding a ListBox of customers in the left column, and a few simple customer
properties on the right.

Here's the ListBox. Note its ItemsSource is bound to the Customers property of our MainViewModel, while the Selectedltem is
bound to the CurrentCustomer.

<ListBox x:Name="listBox1"

ItemsSource="{Binding Customers}"
SelectedItem="{Binding Path=CurrentCustomer, Mode=TwoWay }"

Page 7 - Last modified on September 20, 2012 11:26

Documentation - MVVM Light with DevForce (Silverlight)

ItemTemplate="{ StaticResource customerListBoxItemsTemplate }"
Margin="0,0,2,0" />

The ItemTemplate determines which customer properties are displayed in the ListBox.

<UserControl.Resources>
<ResourceDictionary>
<DataTemplate x:Key="customerListBoxItemsTemplate">
<Grid>
<TextBlock Text="{Binding CompanyName}"
TextTrimming="WordEllipsis" />
</Grid>
</DataTemplate>
</ResourceDictionary>
</UserControl.Resources>

Finally, another grid bound to CurrentCustomer will display a few simple customer properties.

<TextBox Grid.ColumnSpan="2" Text="{Binding CompanyName, Mode=TwoWay }" FontSize="32" TextWrapping="Wrap" />
<TextBox Grid.Column="1" Grid.Row="1" Text="{Binding Path=CustomerID, Mode=TwoWay }" TextWrapping="NoWrap"
Vertical Alignment="Center" IsReadOnly="True" Width="265" Horizontal Alignment="Left" />
<TextBox Grid.Column="1" Grid.Row="2" Text="{Binding Country, Mode=TwoWay }" TextWrapping="Wrap"
Horizontal Alignment="Left" Width="188" Vertical Alignment="Center" Margin="0" />

See the sample solution for the full XAML markup or follow the video for complete directions.

As you've been making these changes to MainPage, you've probably noticed that the design time data was displayed in the
design surface for bound properties. Wahoo! The design time data is coming from our DesignDemoDataService, instantiated by
the ViewModelLocator when in design mode and passed to the MainViewModel. Remember the view's DataContext is set to the

MainViewModel via the locator.
Let's be brave and run the application now too to see our run time data. Real customers should have been loaded, and we

can select customers in the ListBox to see additional information. Since it's run time, the ViewModelLocator created our
DemoDataService, which is querying the database to load data.

Here's our running application:

Page 8 - Last modified on September 20, 2012 11:26

Documentation - MVVM Light with DevForce (Silverlight)

| e oA & http://localhost:9009/ P~-BOX ” g MuwwmLightDemo * ‘

Mvvm Light Demo

Alfreds Futterkiste

Ana Trujillo Emparedados y helados 1 ‘Arou nd the Horn

Antonic Moreno Tagueria
Arocund the Hern Id |f2 14f516-d55d-4f98-a56d-7ed65fd79520

Berglunds snabbkop

Country |uk |

Blauer See Delikatessen

Blondesddsl pére et fils
Bélido Comidas preparadas
Bon app’

Bottom-Dollar Markets

B's Baverages Il
Cactus Comidas para llevar
Centro comercial Moctezuma
Chop-suey Chinese
Comércio Mineiro
Consolidated Holdings

Die Wandernde Kuh

Drachenblut Delikatessen
Cu monde entier
Eastern Connection

Ernst Handel -
Customers loaded.

m

See it Blend

With the separation of the view and view model, and the inclusion of design time data, we can easily use the Visual Studio
designer (Cider) or design tools such as Expression Blend to continue improving the design and usability of the view.

"Mvvm Light Demo

The Design Width Company b |

mr— The Design Width Company Name

Customer 2
Customer 3 Id | 68bBe08b-923b-41c4-9482-6a37c3256C27 |

Customer 4

. Country |France

Customer &
Customer 7
Customer 8
Customer 8

Customer 10

1]
Customers loaded.

Page 9 - Last modified on September 20, 2012 11:26

http://www.microsoft.com/expression/products/blend_overview.aspx

Documentation - MVVM Light with DevForce (Silverlight)

Prerequisites

The MV VM Light Toolkit emphasizes the "blendability" of your application, including the creation of design-time data and
separation of your view from your model. The toolkit contains much more than shown here. Check it out!

We've used NuGet to install MVVM Light, although it's not required and you can manually install MVVM Light if desired.
NuGet will save you several steps, and you'll quickly become a fan.

Page 10 - Last modified on September 20, 2012 11:26

http://galasoft.ch/mvvm/
http://nuget.org/

