
Documentation - MVVM Light with DevForce (Silverlight)

Page 1 - Last modified on September 20, 2012 11:26

Contents

• Problem
• Solution

• From File | New to DevForce Entity Model
• Create a DevForce model

• Install MVVM Light using NuGet
• Add the data service
• Write the ViewModel
• Modify the ViewModelLocator
• Design the view
• See it Blend

• Prerequisites

Laurent Bugnion's MVVM Light is one of the popular frameworks for building MVVM-style applications. It's lightweight,
open-source, and you can find it here.

• Platform: Silverlight
• Language: C#, VB
• Download: MVVM Light with DevForce

You'll need to unblock the MVVM light .dlls. If you don't, VS will give you a friendly reminder to do so.

Problem
A number of DevForce customers have asked for some guidance on bringing DevForce and MVVM together.

Solution
The code sample, and companion video, illustrates:

• DevForce and MVVM Light working together
• Repository/DataService pattern
• Design data repository to facilitate view development with design tools
• Building a view in VS "Cider" design tool

For the best learning experience, we recommend you watch the video and follow along with the sample code of the
completed solution.

From File | New to DevForce Entity Model

Let's begin by creating a new project. First, select File | New | Project from the main menu in Visual Studio, and select the
DevForce Silverlight Application template. Name the solution "MvvmLightDemo".

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/mvvm
http://galasoft.ch/mvvm/getstarted/
/df2012samples/DevForceWithMvvmLight.zip
http://www.youtube.com/embed/zwR0ioKwwIc
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/create-new-solutions-devforce-templates

Documentation - MVVM Light with DevForce (Silverlight)

Page 2 - Last modified on September 20, 2012 11:26

Create a DevForce model

We'll add the entity model directly to our web and Silverlight projects in this example. This is a simplistic approach, and
for long term maintainability we recommend separate .NET and SL model projects to hold the model, but that's a lesson for
another time!

Right-click on the MvvmLightDemoWeb project and select Add | New Item. In the Add New Item dialog, you will find
the ADO.NET Entity Data Model under Data. We'll name ours Model.edmx and click Add. (You can also locate the template
quickly by simply typing "ADO" into the Search Installed Templates field in the upper right of the dialog.)

Generate from the NorthwindIB database that is provided as part of the DevForce installation and accept defaults. We'll
include only the Customer table in this simple model. Once the wizard completes you'll see the DevForce-generated model in
the web project and a link to it in the Silverlight project.

Install MVVM Light using NuGet

We use the NuGet package manager to install MVVM Light. If you don't have NuGet installed you can directly download and
install MVVM Light, but we highly recommend using NuGet since it will simplify the process, and many other vendors are now
using NuGet too.

Right click on the MvvmLightDemo project and select "Add Library Package Reference ..." from the menu. Search for
"Mvvm Light", and click "Install" once found.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/edm-designer
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-generate
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-link-source-file#HLinking
http://nuget.org
http://galasoft.ch/mvvm/

Documentation - MVVM Light with DevForce (Silverlight)

Page 3 - Last modified on September 20, 2012 11:26

This will install the MVVM Light assemblies into the Silverlight project, add a "ViewModel" folder with MainvViewModel and
ViewModelLocator classes, and modify the application resources in the App.xaml to add the ViewModelLocator as a resource.
 We'll discuss these more below.

Add the data service

Next we'll add a simple repository/data service to access our entity model. Add a code or class file to the MvvmLightDemo
Silverlight project and name it DemoDataService.

Add an IDemoDataService interface. Here only a LoadCustomers method is needed.

C#using System;
using System.Collections.Generic;
using IdeaBlade.EntityModel;
namespace MvvmLightDemo {
 public interface IDemoDataService {
 void LoadCustomers(
 Action<IEnumerable<Customer>> success = null,
 Action<Exception> fail = null);
 }
}

VBImports System
Imports System.Collections.Generic
Imports IdeaBlade.EntityModel
Namespace MvvmLightDemo
Public Interface IDemoDataService
 Sub LoadCustomers(Optional ByVal success As Action(Of IEnumerable(Of Customer)) = Nothing, _
 Optional ByVal fail As Action(Of Exception) = Nothing)
End Interface
End Namespace

Next add a DemoDataService class. This class will serve as the run time data service for this sample. It will be responsible for
querying all Customers using the EntityManager.

C#public class DemoDataService : IDemoDataService {
 public DemoDataService() {
 Manager = new NorthwindIBEntities();
 }
 protected NorthwindIBEntities Manager { get; set; }
 public void LoadCustomers(
 Action<IEnumerable<Customer>> success = null,
 Action<Exception> fail = null) {
 Manager.Customers

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager

Documentation - MVVM Light with DevForce (Silverlight)

Page 4 - Last modified on September 20, 2012 11:26

 .OrderBy(c => c.CompanyName)
 .ExecuteAsync(op => {
 if (op.CompletedSuccessfully) {
 if (null != success) {
 success(op.Results);
 }
 } else {
 if (null != fail) {
 op.MarkErrorAsHandled();
 fail(op.Error);
 }
 }
 });
 }
}

VBPublic Class DemoDataService
Implements IDemoDataService
Public Sub New()
 Manager = New NorthwindIBEntities()
End Sub
Protected Property Manager() As NorthwindIBEntities
Public Sub LoadCustomers(Optional ByVal success As Action(Of IEnumerable(Of Customer)) = Nothing, _
 Optional ByVal fail As Action(Of Exception) = Nothing)
 Manager.Customers.OrderBy(Function(c) c.CompanyName).ExecuteAsync(Sub(op)
 If op.CompletedSuccessfully Then
 If Nothing IsNot success Then
 success(op.Results)
 End If
 Else
 If Nothing IsNot fail Then
 op.MarkErrorAsHandled()
 fail(op.Error)
 End If
 End If
End Sub)
End Sub
End Class

Finally let's add a DesignDemoDataService class for design-time support. This service will be responsible for supplying design-
time data.

C#public class DesignDemoDataService : IDemoDataService {
 public void LoadCustomers(
 Action<IEnumerable<Customer>> success = null,
 Action<Exception> fail = null) {
 if (null != success) success(CreateDesignCustomers());
 }
 private static IEnumerable<Customer> CreateDesignCustomers() {
 var custs = new List<Customer>();
 // First customer is for full detail customer design
 custs.Add(
 new Customer {
 CustomerID = Guid.NewGuid(),
 CompanyName = "The Design Width Company Name",
 Address = "123 Main Street",
 City = "Anytown",
 ContactName = "Harry Fidurcci",
 Phone = "(510) 555 1212 x10",
 Country = "France",
 }
);
 // 10 dummy customers for listboxes
 var custCounter = 1;
 while (custCounter <= 10) {
 var cust = new Customer {
 CustomerID = Guid.NewGuid(),
 CompanyName = "Customer " + custCounter++,
 Country = "USA"
 };
 custs.Add(cust);

Documentation - MVVM Light with DevForce (Silverlight)

Page 5 - Last modified on September 20, 2012 11:26

 }
 return custs;
 }
}

VBPublic Class DesignDemoDataService
Implements IDemoDataService
Public Sub LoadCustomers(Optional ByVal success As Action(Of IEnumerable(Of Customer)) = Nothing, _
 Optional ByVal fail As Action(Of Exception) = Nothing)
 If Nothing IsNot success Then
 success(CreateDesignCustomers())
 End If
End Sub
Private Shared Function CreateDesignCustomers() As IEnumerable(Of Customer)
Dim custs = New List(Of Customer)()
 ' First customer is for full detail customer design
 custs.Add(New Customer With {.CustomerID = Guid.NewGuid(), _
 .CompanyName = "The Design Width Company Name", .Address = "123 Main Street", _
 .City = "Anytown", .ContactName = "Harry Fidurcci", _
 .Phone = "(510) 555 1212 x10", .Country = "France"})
 ' 10 dummy customers for listboxes
 Dim custCounter = 1
 Do While custCounter <= 10
 Dim cust = New Customer With {.CustomerID = Guid.NewGuid(), _
 .CompanyName = "Customer " & custCounter, .Country = "USA"}
 custCounter += 1
 custs.Add(cust)
 Loop
 Return custs
End Function
End Class

We've now got a simple data service providing LoadCustomers support at both design and run time. Now let's write
something to use it.

Write the ViewModel

A class called MainViewModel was created for us when we added MVVM Light. We'll add our own properties and logic to it.

First, let's make sure we've got the right usings (or Imports) statements:

C#using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using GalaSoft.MvvmLight;

VBImports System
Imports System.Collections.Generic
Imports System.Collections.ObjectModel
Imports System.Linq
Imports GalaSoft.MvvmLight

Our view will display Customers, a status message, and detail on each selected Customer. We'll add these properties to the
ViewModel so the view can bind to them:

C#public ObservableCollection<Customer> Customers { get; private set; }
private string _message;
public string Message
{
 get { return _message; }
 set { _message = value; RaisePropertyChanged("Message"); }
}
private Customer _currentCustomer;
public Customer CurrentCustomer
{
 get { return _currentCustomer; }
 set { _currentCustomer = value; RaisePropertyChanged("CurrentCustomer"); }
}

VBPrivate privateCustomers As ObservableCollection(Of Customer)
Public Property Customers() As ObservableCollection(Of Customer)
Get

Documentation - MVVM Light with DevForce (Silverlight)

Page 6 - Last modified on September 20, 2012 11:26

 Return privateCustomers
End Get
Private Set(ByVal value As ObservableCollection(Of Customer))
 privateCustomers = value
End Set
End Property
Private _message As String
Public Property Message() As String
 Get
 Return _message
 End Get
 Set(ByVal value As String)
 _message = value
 RaisePropertyChanged("Message")
 End Set
End Property
Private _currentCustomer As Customer
Public Property CurrentCustomer() As Customer
 Get
 Return _currentCustomer
 End Get
 Set(ByVal value As Customer)
 _currentCustomer = value
 RaisePropertyChanged("CurrentCustomer")
 End Set
End Property

We also want to inject a data service into the ViewModel when constructed, so let's remove the default constructor generated
for us and add a constructor which accepts an IDemoDataService.

C#private IDemoDataService _dataService;
public MainViewModel(IDemoDataService dataService)
{
 _dataService = dataService;
}

VBPublic Sub MainViewModel(ByVal dataService As IDemoDataService)
 _dataService = dataService
End Sub

We also want to initialize and load our data when the constructor is called, so let's also add a call to the LoadCustomers
method on our data service, along with "success" and "failure" callbacks. These will be called based on whether the load
succeeds or fails.

C#public MainViewModel(IDemoDataService dataService)
{
 _dataService = dataService;
 Customers = new ObservableCollection<Customer>();
 Message = "... Loading ...";
 _dataService.LoadCustomers(CustomersLoaded, CustomerLoadFailed);
}
private void CustomersLoaded(IEnumerable<Customer> customers)
{
 foreach (var customer in customers)
 {
 Customers.Add(customer);
 }
 CurrentCustomer = customers.FirstOrDefault();
 Message = "Customers loaded.";
}
private void CustomerLoadFailed(Exception except)
{
 Message = "Customer Load Failed: " + except.Message;
}

VBPublic Sub New(ByVal dataService As IDemoDataService)
_dataService = dataService
Customers = New ObservableCollection(Of Customer)()
Message = "... Loading ..."
_dataService.LoadCustomers(AddressOf CustomersLoaded, AddressOf CustomerLoadFailed)
End Sub
Private Sub CustomersLoaded(ByVal customers As IEnumerable(Of Customer))

Documentation - MVVM Light with DevForce (Silverlight)

Page 7 - Last modified on September 20, 2012 11:26

 For Each customer In customers
Customers.Add(customer)
 Next customer
CurrentCustomer = customers.FirstOrDefault()
Message = "Customers loaded."
End Sub
Private Sub CustomerLoadFailed(ByVal except As Exception)
Message = "Customer Load Failed: " & except.Message
End Sub

Modify the ViewModelLocator

The ViewModelLocator is another class auto-generated when you added the MVVM Light package. We've made a few changes
to make the "_main" variable non-static, and added a variable for our "_dataService". Here in the locator's constructor is
where we've moved the check for DesignMode, and we've added logic to construct either our DesignDemoDataService or
DemoDataService as appropriate. We pass this service along when we construct the MainViewModel.

C#private MainViewModel _main;
private IDemoDataService _dataService;
public ViewModelLocator()
{
 if (ViewModelBase.IsInDesignModeStatic)
 {
 _dataService = new DesignDemoDataService();
 }
 else
 {
 _dataService = new DemoDataService();
 }
 _main = new MainViewModel(_dataService);
}

VBPrivate _main As MainViewModel
Private _dataService As IDemoDataService
Public Sub New()
 If ViewModelBase.IsInDesignModeStatic Then
 _dataService = New DesignDemoDataService()
 Else
_dataService = New DemoDataService()
 End If
_main = New MainViewModel(_dataService)
End Sub

The MVVM Light installation also added the locator as an application resource to our App.xaml.

XAML<Application.Resources>
 <vm:ViewModelLocator x:Key="Locator" d:IsDataSource="True" />
</Application.Resources>

Design the view

First, to tie our view to our view model, in the MainPage.xaml we set the DataContext for the view to the Main property of the
locator.

XAMLDataContext="{Binding Source={StaticResource Locator}, Path=Main}"

Next we create a simple grid layout with three rows. We'll add a title, and a TextBlock bound to the Message property we
created on our MainViewModel:

XAML<TextBlock Name="textBlock1" Text="Mvvm Light Demo" Grid.ColumnSpan="2" FontSize="40" TextAlignment="Center" />
<TextBlock Grid.Row="2" Name="textBlock2" Text="{Binding Path=Message}" Margin="8,0,0,0" />

The second row will contain another grid, holding a ListBox of customers in the left column, and a few simple customer
properties on the right.

Here's the ListBox. Note its ItemsSource is bound to the Customers property of our MainViewModel, while the SelectedItem is
bound to the CurrentCustomer.

XAML<ListBox x:Name="listBox1"
 ItemsSource="{Binding Customers}"
 SelectedItem="{Binding Path=CurrentCustomer, Mode=TwoWay}"

Documentation - MVVM Light with DevForce (Silverlight)

Page 8 - Last modified on September 20, 2012 11:26

 ItemTemplate="{StaticResource customerListBoxItemsTemplate}"
 Margin="0,0,2,0" />

The ItemTemplate determines which customer properties are displayed in the ListBox.

XAML<UserControl.Resources>
 <ResourceDictionary>
 <DataTemplate x:Key="customerListBoxItemsTemplate">
 <Grid>
 <TextBlock Text="{Binding CompanyName}"
 TextTrimming="WordEllipsis" />
 </Grid>
 </DataTemplate>
 </ResourceDictionary>
</UserControl.Resources>

Finally, another grid bound to CurrentCustomer will display a few simple customer properties.

XAML<TextBox Grid.ColumnSpan="2" Text="{Binding CompanyName, Mode=TwoWay}" FontSize="32" TextWrapping="Wrap" />
<TextBox Grid.Column="1" Grid.Row="1" Text="{Binding Path=CustomerID, Mode=TwoWay}" TextWrapping="NoWrap"
 VerticalAlignment="Center" IsReadOnly="True" Width="265" HorizontalAlignment="Left" />
<TextBox Grid.Column="1" Grid.Row="2" Text="{Binding Country, Mode=TwoWay}" TextWrapping="Wrap"
 HorizontalAlignment="Left" Width="188" VerticalAlignment="Center" Margin="0" />

See the sample solution for the full XAML markup or follow the video for complete directions.

As you've been making these changes to MainPage, you've probably noticed that the design time data was displayed in the
design surface for bound properties. Wahoo! The design time data is coming from our DesignDemoDataService, instantiated by
the ViewModelLocator when in design mode and passed to the MainViewModel. Remember the view's DataContext is set to the
MainViewModel via the locator.
Let's be brave and run the application now too to see our run time data. Real customers should have been loaded, and we
can select customers in the ListBox to see additional information. Since it's run time, the ViewModelLocator created our
DemoDataService, which is querying the database to load data.

Here's our running application:

Documentation - MVVM Light with DevForce (Silverlight)

Page 9 - Last modified on September 20, 2012 11:26

See it Blend

With the separation of the view and view model, and the inclusion of design time data, we can easily use the Visual Studio
designer (Cider) or design tools such as Expression Blend to continue improving the design and usability of the view.

http://www.microsoft.com/expression/products/blend_overview.aspx

Documentation - MVVM Light with DevForce (Silverlight)

Page 10 - Last modified on September 20, 2012 11:26

Prerequisites
The MVVM Light Toolkit emphasizes the "blendability" of your application, including the creation of design-time data and
separation of your view from your model. The toolkit contains much more than shown here. Check it out!

We've used NuGet to install MVVM Light, although it's not required and you can manually install MVVM Light if desired.
 NuGet will save you several steps, and you'll quickly become a fan.

http://galasoft.ch/mvvm/
http://nuget.org/

