
Documentation - Code sample: Stored procedure queries (Silverlight)

Page 1 - Last modified on September 20, 2012 11:06

Contents

• Problem
• Solution

• Defining the procedure in the EDM
• Using the sample

This sample shows how to define and execute a stored procedure.

• Platform: Silverlight
• Language: C#, VB
• Download: Stored procedure queries (Silverlight)

Problem
You'd like to use a query stored procedure, i.e., one returning data.  Once defined, how do you call it?

Solution
This sample shows how to define a stored procedure in the Entity Data Model and then how to execute the StoredProcQuery in
a Silverlight application.

Defining the procedure in the EDM

The NorthwindIB database contains a stored procedure called “OrdersGetForEmployeeAndYear”, which takes two arguments,
an employee ID and the year, and returns all columns from the Order table meeting the criteria.  We'll use this stored procedure
in the sample.

When creating the NorthwindIBModel.edmx model with the wizard we included this stored procedure along with several
tables.  This added the stored procedure to the "storage definition" of the model.  We must also add a “Function Import” to
represent the procedure in the conceptual model. 

/df2012samples/Silverlight_StoredProcedureQuery.zip
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/stored-procedure-queries


Documentation - Code sample: Stored procedure queries (Silverlight)

Page 2 - Last modified on September 20, 2012 11:06

Here’s what the resulting model looks like in the Model Browser:

Note that we changed the name of the function import to “EmployeeOrdersForYear”.

In the auto-generated code, DevForce generates two methods for each stored procedure – one method to create and execute
the query, and another method to create and return the query:



Documentation - Code sample: Stored procedure queries (Silverlight)

Page 3 - Last modified on September 20, 2012 11:06

C#IEnumerable<Order> EmployeeOrdersForYear(Nullable<int> EmployeeID, Nullable<int> Year);
StoredProcQuery EmployeeOrdersForYearQuery(Nullable<int> EmployeeID, Nullable<int> Year);

VBIEnumerable(Of Order) EmployeeOrdersForYear(Integer?  EmployeeID, Integer?  Year)
StoredProcQuery EmployeeOrdersForYearQuery(Integer?  EmployeeID, Integer?  Year)

Using the sample

In Silverlight we can’t use the “EmployeeOrdersForYear” generated method, because it will synchronously execute the
StoredProcQuery and return the results, and synchronous queries to the server are not supported in Silverlight. So instead we’ll
use the second generated method, “EmployeeOrdersForQuery”, which will build a StoredProcQuery for us with all query
parameters set. We don’t have to use this helper method; we could build up the StoredProcQuery in code, but the helper makes
things easier.

C#StoredProcQuery query = _mgr.EmployeeOrdersForYearQuery(EmployeeID: 1, Year: 1996);
query.ExecuteAsync(GotOrders);

VBDim query As StoredProcQuery = _mgr.EmployeeOrdersForYearQuery(EmployeeID:= 1, Year:= 1996)
query.ExecuteAsync(GotOrders)

When the query completes, we also show how to use asynchronous navigation to retrieve scalar and list navigation properties
for related data. Asynchronous navigation of related entities is another feature which can be used in Silverlight applications,
since by default DevForce uses lazy loading of related data. In non-Silverlight applications this lazy loading is performed
synchronously, but since queries will be sent to the server to retrieve the related data, we must use asynchronous queries in
Silverlight, what we call “asynchronous navigation”. Asynchronous navigation is not specific to use with stored procedure
queries, but since these queries cannot have ‘Include” methods to also bring in related data, asynchronous navigation becomes
especially useful.

For scalar properties, you can listen on the PendingEntityResolved event to be notified when the entity is loaded into cache:

C#anOrder.OrderDetails.PendingEntityResolved += (o, e) => {

VBAddHandler details.PendingEntityResolved, Sub(o, e)

You can also test whether an entity is “pending”, i.e., an asynchronous query has been issued for it but the entity is not yet in
cache –

C#if (anOrder.SalesRep.EntityAspect.IsPendingEntity) {}

VBIf anOrder.SalesRep.EntityAspect.IsPendingEntity Then
End If 

For list properties, you’ll listen on the PendingEntityListResolved event:

C#anOrder.OrderDetails.PendingEntityListResolved += (o, e) => {

VBDim details As RelatedEntityList(Of OrderDetail) = anOrder.OrderDetails
AddHandler details.PendingEntityListResolved, Sub(o, e)

And can test if the list is pending -

C#if (anOrder.SalesRep.EntityAspect.IsPendingEntityList) {}

VBIf anOrder.SalesRep.EntityAspect.IsPendingEntityList Then
End If 

Note that you should remove event handlers when they’re no longer needed to avoid memory leaks.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/asynchronous-navigation-properties

