
Documentation - Code sample: DevForce Windows Phone app tour (Code First)

Page 1 - Last modified on October 27, 2013 09:31

Contents

• Getting started
• Overview
• Additional resources

The Windows Phone app tour provides an introduction to developing a Windows Phone app with DevForce 2012.

What you'll learn:

• How to write n-tier LINQ queries in DevForce
• How to handle asynchronous queries and saves
• Simple navigation techniques in Windows Phone apps
• Abstracting data management into a DataService

This version of the tour uses a Code First model.  See here for the Database First version.

• Platform: Windows Phone
• Language: C#
• Download: Windows Phone Dev Tour (Code First)
• Prerequisites: Windows Phone 8 SDK

Getting started
The Windows Phone app tour demonstrates a simple two page master/detail phone application. The first page lists all customers
in the NorthwindIB sample database and provides search capability. Tap a customer and it takes you to the detail page where
you can edit the customer and save. Tapping the back button takes you back to the list.

You must enable NuGet package restore within Visual Studio in order to restore the required DevForce NuGet packages and
other dependencies. The first time you build the application, the dependent NuGet packages are installed. 

The Windows Phone app tour includes a SQL CE version of the NorthwindIB sample database.

Let's first take a look at the solution structure:

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-windows-phone-tour
/df2012samples/WindowsPhone_CodeFirstDevTour.zip
https://dev.windowsphone.com/en-us/downloadsdk
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/installing-devforce-2012


Documentation - Code sample: DevForce Windows Phone app tour (Code First)

Page 2 - Last modified on October 27, 2013 09:31

A DevForce Windows Phone application is an n-tier application, and uses an EntityServer to perform all backend data access.
We see that reflected in the solution structure: WindowsPhoneDevTour is the client application project, and Server is the web
application project hosting the EntityServer.

Next, let's look at the model. 

We've added the DevForce Code First NuGet package to both projects.  This package adds the necessary DevForce
and PostSharp dependencies, and is always required in a model project, Server here; and in the "linked" client project,
WindowsPhoneDevTour here.

File NorthwindIBEntities.cs contains our model:  here a single entity Customer, and a custom EntityManager.  

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-classes


Documentation - Code sample: DevForce Windows Phone app tour (Code First)

Page 3 - Last modified on October 27, 2013 09:31

See Apply DevForce AOP attributes, Add a custom EntityManager, and Add a custom DbContext for more information on
writing a Code First model.

Our custom EntityManager and Customer classes in file NorthwindIBEntities.cs are also required in the Windows Phone
project, so the file has been added as a link.  When we build the solution, a metadata file, here NorthwindIBEntities.ibmmx is
added to the Server project, and also added as a link to the WindowsPhoneDevTour project.  In both cases, the file is given
a build action of "Embedded Resource".  See Generate metadata for more information on how to work with ibmmx files in
DevForce.

Overview
1. In order to query data from the server, you need to specify the URL, port and service name of the EntityServer. You can

do this either with an app.config file, or programmatically, as shown in the application constructor (in App.xaml.cs):

C#public App()
{
 ...
    IdeaBladeConfig.Instance.ObjectServer.RemoteBaseUrl = "http://xx.xx.xx.xx";
    IdeaBladeConfig.Instance.ObjectServer.ServerPort = 80;
    IdeaBladeConfig.Instance.ObjectServer.ServiceName = "WindowsPhoneDevTour/EntityService.svc";
}
Important: The phone emulator is a separate virtual machine, and as such a server address such as http://localhost will not
work.  You can instead use the IP address of the host PC.  Also, by default IIS Express only allows connections to localhost.  To
work around this you can modify the applicationhost.config file for the IIS Express application, or you can instead use IIS as
your web server.  These options are explained in more detail here.

2. MainPage.xaml is the master/search page. It displays all customers and provides search capability by customer name.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-classes#HApplyDevForceAOPattributes
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-dbcontext
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-generate-metadata
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HWindowsPhone
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj684580%28v=vs.105%29.aspx


Documentation - Code sample: DevForce Windows Phone app tour (Code First)

Page 4 - Last modified on October 27, 2013 09:31

Looking at the code, notice the Start method, called from the OnNavigatedTo handler:

C#public async void Start()
{
   try
    {
        IsBusy = true;
        var customers = await DataService.Instance.GetAllCustomersAsync();
        Customers = new ObservableCollection<Customer>(customers);
    }
   finally
    {
        IsBusy = false;
    }
}

A few things to note here: data retrieval is asynchronous using the async/await keywords, and data management activities are
performed by a DataService class.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/program-asynchronously


Documentation - Code sample: DevForce Windows Phone app tour (Code First)

Page 5 - Last modified on October 27, 2013 09:31

The IsBusy flag is used, via data binding, to display a progress indicator:

XAML<shell:SystemTray.ProgressIndicator>
   <shell:ProgressIndicator IsIndeterminate="true" IsVisible="{Binding IsBusy}" />
</shell:SystemTray.ProgressIndicator>

Let's also look at the search button event handler:

C#private async void Search(object sender, RoutedEventArgs e)
{
   try
    {
        IsBusy = true;
       if (string.IsNullOrEmpty(SearchText))
        {
            Start();
           return;
        }
        var customers = await DataService.Instance.FindCustomersAsync(SearchText);
        Customers = new ObservableCollection<Customer>(customers);
    }
   finally
    {
        IsBusy = false;
    }
}

Again, we see asynchronous data retrieval using the DataService which encapsulates the DevForce LINQ queries.

3. When a customer is selected, the NavigateToDetailPage method is called.  This uses the NavigationService to navigate to
the detail page.  We're also passing an id parameter containing the ID of the selected customer.

C#private void NavigateToDetailPage() {
  NavigationService.Navigate(new Uri("/DetailPage.xaml?id=" + HttpUtility.UrlEncode(SelectedCustomer.CustomerID.ToString()),
UriKind.Relative));
}

4. DetailPage.xaml shows customer details, and allows editing with save, delete and undo capabilities.

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402536(v=vs.105).aspx


Documentation - Code sample: DevForce Windows Phone app tour (Code First)

Page 6 - Last modified on October 27, 2013 09:31

Looking at the code, we see the Start method is called from the OnNavigatedTo handler, which receives the ID of the
customer to be displayed in the NavigationContext.QueryString.

C#protected override void OnNavigatedTo(NavigationEventArgs e) {
...
  var id = NavigationContext.QueryString["id"];
  Start(new Guid(id));
...
}

C#public async void Start(Guid customerId)
{
    Customer = await DataService.Instance.GetCustomerAsync(customerId);
}

And here's the Save button handler, which asks the DataService to perform a save, and will display a message upon failure:

C#private async void Save(object sender, EventArgs e)
{
 try {



Documentation - Code sample: DevForce Windows Phone app tour (Code First)

Page 7 - Last modified on October 27, 2013 09:31

    IsBusy = true;
    await DataService.Instance.SaveAsync();
  } catch (EntityManagerSaveException err) {
    MessageBox.Show("Save failed: " + err.Message);
  } finally {
    IsBusy = false;
  }
}

One thing worth noting, the ApplicationBar does not support data binding, so we've used a bit of a hack to associate hidden
CheckBox controls, which are data bound, to the buttons of the ApplicationBar, and toggle the IsEnabled status of each button
when the status of its corresponding checkbox changes.

5. The DataService.cs contains a singleton data service used throughout the application. Both the MainPage and DetailPage
work directly with the DataService, which encapsulates the DevForce EntityManager and performs all queries and saves.

Here's a sample method, this one to retrieve all customers:

C#public Task<IEnumerable<Customer>> GetAllCustomersAsync()
{
  return _entityManager.Customers.OrderBy(x => x.CompanyName).ExecuteAsync();
}

The Task returned is awaited upon by the caller, the MainPage Start method we saw above.

Additional resources
• Windows Phone Dev Center

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff431813(v=vs.105).aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
https://dev.windowsphone.com/en-us

