
Documentation - Code sample: DevForce Windows Store app tour (Code First)

Page 1 - Last modified on October 27, 2013 09:34

Contents

• Getting started
• Overview
• Additional resources

The Windows Store Developer's Tour provides an introduction to developing a Windows Store app with DevForce 2012.

What you'll learn:

• How to write n-tier LINQ queries in DevForce
• How to handle asynchronous queries and saves
• Simple navigation techniques in Windows Store apps
• Abstracting data management into a DataService

This version of the tour uses a Code First model.  See here for the Database First version.

• Platform: Windows Store
• Language: C#
• Download: Windows Store Dev Tour (Code First)
• Prerequisites: Windows 8 RTM or above

Getting started
The Windows Store Developer's Tour demonstrates a simple two page master/detail application. The first page lists all
customers in the NorthwindIB sample database and provides search capability. Tap a customer and it takes you to the detail page
where you can edit the customer and save. Tapping the back button takes you back to the list.

You must enable NuGet package restore within Visual Studio in order to restore the required DevForce NuGet packages and
other dependencies. The first time you build the application, the dependent NuGet packages are installed. 

The Developer's tour includes a SQL CE version of the NorthwindIB sample database.

Let's first take a look at the solution structure:

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-windows-store-tour
/df2012samples/WindowsStore_CodeFirstDevTour.zip
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/installing-devforce-2012


Documentation - Code sample: DevForce Windows Store app tour (Code First)

Page 2 - Last modified on October 27, 2013 09:34

A DevForce Windows Store application is an n-tier application, and uses an EntityServer to perform all backend data access.
We see that reflected in the solution structure: WindowsStoreDevTour is the client application project, and Server is the web
application project hosting the EntityServer.

Next, let's look at the model. 

We've added the DevForce Code First NuGet package to both projects.  This package adds the necessary DevForce
and PostSharp dependencies, and is always required in a model project, Server here; and in the "linked" client project,
WindowsStoreDevTour here.

File NorthwindIBEntities.cs contains our model:  here a single entity Customer, and a custom EntityManager.  

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-classes


Documentation - Code sample: DevForce Windows Store app tour (Code First)

Page 3 - Last modified on October 27, 2013 09:34

See Apply DevForce AOP attributes, Add a custom EntityManager, and Add a custom DbContext for more information on
writing a Code First model.

Our custom EntityManager and Customer classes in file NorthwindIBEntities.cs are also required in the Windows Store
project, so the file has been added as a link.  When we build the solution, a metadata file, here NorthwindIBEntities.ibmmx is
added to the Server project, and also added as a link to the WindowsStoreDevTour project.  In both cases, the file is given a build
action of "Embedded Resource".  See Generate metadata for more information on how to work with ibmmx files in DevForce.

Overview
1. In order to query data from the server, you need to specify the URL of the EntityServer.  You can do this either with an

embedded app.config file, or programmatically, as show in the application constructor:

C#public App()
{
   this.InitializeComponent();
   this.Suspending += OnSuspending;
    IdeaBladeConfig.Instance.ObjectServer.RemoteBaseUrl = "http://localhost";
    IdeaBladeConfig.Instance.ObjectServer.ServerPort = 57209;
    IdeaBladeConfig.Instance.ObjectServer.ServiceName = "EntityService.svc";
}

2. ListPage.xaml is the master/search page. It displays all customers and provides search capability by customer name.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entity-classes#HApplyDevForceAOPattributes
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-dbcontext
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first-generate-metadata
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HWindowsStore


Documentation - Code sample: DevForce Windows Store app tour (Code First)

Page 4 - Last modified on October 27, 2013 09:34

Looking at the code, notice the Start method, called from the OnNavigatedTo handler:

C#public async void Start()
{
   try
    {
        IsBusy = true;
        var customers = await DataService.Instance.GetAllCustomersAsync();
        Customers = new ObservableCollection<Customer>(customers);
    }
   finally
    {
        IsBusy = false;
    }
}

A few things to note here: data retrieval is asynchronous using the async/await keywords, and data management activities are
performed by a DataService class.

The IsBusy flag is used, via data binding, to display a busy indicator:

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/program-asynchronously


Documentation - Code sample: DevForce Windows Store app tour (Code First)

Page 5 - Last modified on October 27, 2013 09:34

XAMLProgressRing Grid.Row="2" IsActive="{Binding IsBusy}"/>

Let's also look at the search button event handler:

C#private async void Search(object sender, RoutedEventArgs e)
{
   try
    {
        IsBusy = true;
       if (string.IsNullOrEmpty(SearchText))
        {
            Start();
           return;
        }
        var customers = await DataService.Instance.FindCustomersAsync(SearchText);
        Customers = new ObservableCollection<Customer>(customers);
    }
   finally
    {
        IsBusy = false;
    }
}

Again, we see asynchronous data retrieval using the DataService which encapsulates the DevForce LINQ queries.

3. When a customer is selected, a detail page is displayed. DetailPage.xaml shows customer details, and allows editing with
save and undo capabilities.



Documentation - Code sample: DevForce Windows Store app tour (Code First)

Page 6 - Last modified on October 27, 2013 09:34

Navigation to the detail page uses Frame.Navigate:

C#private void NavigateToDetailPage()
{
  Frame.Navigate(typeof (DetailPage), SelectedCustomer.CustomerID);
}

Looking at the code for DetailPage.xaml.cs, we see the Start method is called from the OnNavigatedTo handler, which
receives the ID of the customer to be displayed in the NavigationEventArgs.

C#public async void Start(Guid customerId)
{
    Customer = await DataService.Instance.GetCustomerAsync(customerId);
}

And here's the Save button handler:

C#private async void Save(object sender, RoutedEventArgs e)



Documentation - Code sample: DevForce Windows Store app tour (Code First)

Page 7 - Last modified on October 27, 2013 09:34

{
  await DataService.Instance.SaveAsync();
}

4. The DataService.cs contains a singleton data service used throughout the application. Both the ListPage and DetailPage
work directly with the DataService, which encapsulates the DevForce EntityManager and performs all queries and saves.

Here's a sample method, this one to retrieve all customers:

C#public Task<IEnumerable<Customer>> GetAllCustomersAsync()
{
    return _entityManager.Customers.OrderBy(x => x.CompanyName).ExecuteAsync();
}

The Task returned is awaited upon by the caller, the ListPage Start method we saw above.

Additional resources
• Windows Store Dev Center

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
http://msdn.microsoft.com/en-us/windows/apps/br229512.aspx

