
Documentation - Code sample: DevForce Windows Universal app tour

Page 1 - Last modified on March 30, 2016 19:11

Contents

• Getting started
• Overview
• Release builds
• Additional resources

The Windows Universal app tour provides an introduction to developing a Windows 10 Universal platform app with
DevForce 2012.

What you'll learn:

• How to write n-tier LINQ queries in DevForce
• How to handle asynchronous queries and saves
• Abstracting data management into a DataService
• Platform: Windows 10 Universal
• Language: C#
• Download: Windows Universal Dev Tour
• Prerequisites: Windows 10

Getting started
The Windows Universal Developer's Tour demonstrates a simple two page master/detail application. The first page lists all
customers in the NorthwindIB sample database and provides search capability. Tap a customer and it takes you to the detail page
where you can edit the customer and save. Tapping the back button takes you back to the list.

You must enable NuGet package restore within Visual Studio in order to restore the required DevForce NuGet packages and
other dependencies. The first time you build the application, the dependent NuGet packages are installed. 

The Developer's tour includes a SQL CE version of the NorthwindIB sample database.

Let's first take a look at the solution structure:

/df2012samples/WindowsUniversalDevTour.zip
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/installing-devforce-2012


Documentation - Code sample: DevForce Windows Universal app tour

Page 2 - Last modified on March 30, 2016 19:11

A DevForce Universal application is an n-tier application, and uses an EntityServer to perform all backend data access. We
see that reflected in the solution structure: WindowsUniversalDevTour is the client application project, and Server is the web
application project hosting the EntityServer.

Next, let's look at the model. The Entity Data Model was added to the Server project, and contains only a single entity type,
Customer:

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver


Documentation - Code sample: DevForce Windows Universal app tour

Page 3 - Last modified on March 30, 2016 19:11

Finally, note that while the entity model is located in the Server project, the generated code for the entities, in the
NorthwindIB.IB.Designer.cs file, is linked in the Windows Universal project so that these entities (and any business logic you add
to the entities) can execute on the client:



Documentation - Code sample: DevForce Windows Universal app tour

Page 4 - Last modified on March 30, 2016 19:11

You can easily extend these entities by declaring a partial class for any of them and linking that file to the client too. These
techniques are common to DevForce client development.

Overview
1. In order to query data from the server, you need to specify the URL of the EntityServer.  You can do this either with an

app.config file, or programmatically, as shown in the application constructor:

C#public App() {
  this.InitializeComponent();
  this.Suspending += OnSuspending;
   IdeaBladeConfig.Instance.ObjectServer.RemoteBaseUrl = "http://localhost";
   IdeaBladeConfig.Instance.ObjectServer.ServerPort = 49541;
   IdeaBladeConfig.Instance.ObjectServer.ServiceName = "EntityService.svc";
 }

2. MainPage.xaml is the master/search page. It displays all customers and provides search capability by customer name.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/client-tier
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HWindows10Universal


Documentation - Code sample: DevForce Windows Universal app tour

Page 5 - Last modified on March 30, 2016 19:11

Looking at the code, notice the Start method, called from the OnNavigatedTo handler:

C#public async void Start()
{
   try
    {
        IsBusy = true;
        var customers = await DataService.Instance.GetAllCustomersAsync();
        Customers = new ObservableCollection<Customer>(customers);
    }
   finally
    {
        IsBusy = false;
    }
}

A few things to note here: data retrieval is asynchronous using the async/await keywords, and data management activities are
performed by a DataService class.

The IsBusy flag is used, via data binding, to display a busy indicator:

XAML<ProgressRing Grid.Row="2" IsActive="{Binding IsBusy}" Foreground="White" Width="64" Height="64"/>

Let's also look at the search logic:

C#private async void DoSearch()
{
   try
    {

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/program-asynchronously


Documentation - Code sample: DevForce Windows Universal app tour

Page 6 - Last modified on March 30, 2016 19:11

        IsBusy = true;
       if (string.IsNullOrEmpty(SearchText))
        {
            Start();
           return;
        }
        var customers = await DataService.Instance.FindCustomersAsync(SearchText);
        Customers = new ObservableCollection<Customer>(customers);
    }
   finally
    {
        IsBusy = false;
    }
}

Again, we see asynchronous data retrieval using the DataService which encapsulates the DevForce LINQ queries.

3. When a customer is selected, a detail page is displayed. DetailPage.xaml shows customer details, and allows editing with
save and undo capabilities.

Navigation to the detail page uses Frame.Navigate:

C#private void NavigateToDetailPage()
{
  Frame.Navigate(typeof (DetailPage), SelectedCustomer.CustomerID);
}

Looking at the code for DetailPage.xaml.cs, we see the Start method is called from the OnNavigatedTo handler, which receives
the ID of the customer to be displayed in the NavigationEventArgs.



Documentation - Code sample: DevForce Windows Universal app tour

Page 7 - Last modified on March 30, 2016 19:11

C#public async void Start(Guid customerId)
{
    Customer = await DataService.Instance.GetCustomerAsync(customerId);
}

And here's the Save button handler:

C#private async void Save(object sender, RoutedEventArgs e)
{
  await DataService.Instance.SaveAsync();
}

4. The DataService.cs contains a singleton data service used throughout the application. Both the MainPage and DetailPage
work directly with the DataService, which encapsulates the DevForce EntityManager and performs all queries and saves.

Here's a sample method, this one to retrieve all customers:

C#public Task<IEnumerable<Customer>> GetAllCustomersAsync()
{
    return _entityManager.Customers.OrderBy(x => x.CompanyName).ExecuteAsync();
}

The Task returned is awaited upon by the caller, the MainPage Start method we saw above.

Release builds
When building a Universal Windows Platform app in release mode the .NET Native tool chain is used to compile your app
to native code for the target platforms specified.  This build removes most dependencies on external runtimes and libraries
and heavily optimizes code for maximum performance. To ensure your DevForce app still works in .NET native you must use
runtime directives to specify its serialization and reflection requirements.

Here is the runtime directive file, Default.rd.xml, for the WindowsUniversalDevTour:

XML<Directives xmlns="http://schemas.microsoft.com/netfx/2013/01/metadata">
  <Application>
    <Assembly Name="*Application*" Dynamic="Required All" />
   
    <Type Name="System.Collections.Generic.List{WindowsUniversalDevTour.Customer}" DataContractSerializer="Required Public"/>
    <Type Name="IdeaBlade.EntityModel.RelatedEntityList{WindowsUniversalDevTour.Customer}" DataContractSerializer="Required
Public"/>
    <Type Name="IdeaBlade.EntityModel.EntityQueryProxy{WindowsUniversalDevTour.Customer}" DataContractSerializer="Required
Public"/>
     
  </Application>
</Directives>

Note that for every entity type in your model you must include a Type directive for List<TEntity>,
RelatedEntityList<TEntity> and EntityQueryProxy<TEntity>, as we see above for the Customer entity.

Additional resources
• Build UWP apps with Visual Studio

• Getting Started with .NET Native

• How-to Guides for UWP apps 

• Runtime Exceptions in .NET Native apps

• Runtime Directives Reference

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
https://msdn.microsoft.com/en-us/library/windows/apps/dn609832.aspx
https://msdn.microsoft.com/en-us/library/dn600165.aspx
https://msdn.microsoft.com/en-us/windows/uwp/index
https://msdn.microsoft.com/en-us/library/mt561774.aspx
https://msdn.microsoft.com/en-us/library/dn600639.aspx

