
Documentation - Code sample: Working with multiple models (Silverlight)

Page 1 - Last modified on October 10, 2012 18:20

Contents

• Problem
• Solution

• Next steps

You can easily access entities defined in multiple entity models from the same EntityManager.  We'll show you how here.

• Platform: Silverlight
• Language: C#, VB
• Download: Working with Multiple Models

Problem
Applications often need multiple entity models.  A sub-typed EntityManager is generated for each of those models, making it
easier to query for entity types within that model.  However, it is also easy to the same EntityManager with multiple models.

Solution
The code sample defines two entity models, each in its own assembly.  The Core model holds a few entity types (in this case
Customer, Product and Supplier), while the Leaf model holds the Employee, Order and OrderDetail entity types.  In this sample,
both models were defined using the NorthwindIB sample database, but in practice the models can be defined for different data
sources.

You can easily imagine your own multi-model scenarios.  Maybe you have entities that are used across all modules within
your application, forming a core model, while you have module-specific entity models too, such as for sales or accounting.  

Since this is a Silverlight application, we also defined corresponding Silverlight assemblies for each model, and linked the
generated code in.  If you add any additional business logic to entities which should be "shared" between the Silverlight client
application and the EntityServer, be sure to also link those files.

The sub-typed EntityManager generated for each model contains query properties to make it easier to build EntityQueries.
 These query properties are only helpers, however, they don't limit what entity types the EntityManager can work with.

You can easily create your own EntityQuery when a helper query property isn't available, and the sample shows this.  When
working in the CoreModelEntityManager, the sub-typed EntityManager for the core model, it creates a query for an entity type
in the leaf model:

C#var query = new EntityQuery<Employee>();

VBDim query = New EntityQuery(Of Employee)()

Don't worry about the several EntityQuery constructor overloads, those are generally needed only for advanced uses or
internally by the framework.

With the EntityQuery in hand, you can then execute the query against any EntityManager.  In the sample, we show execution
of queries for entities in both the core and leaf models.

Next steps

You can easily subclass and create your own typed EntityManager with whatever properties you need. The auto-generated
EntityManager contains no "magic" and you can use it as a template for your own implementations.

To navigate between entities in different models, we suggest using a repository pattern in a third assembly to avoid
circular references among the models. For example, you might call Repository.GetSalesRep(someCustomer) instead of
someCustomer.SalesRep.  The additional layer of abstraction the repository provides isolates the modeling and data access
mechanics, and improves testability.

When saving entities defined in multiple models from a single EntityManager the save will by default be transactional across
the data sources.  You may need to enable the Distributed Transaction Coordinator in this case.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
/df2012samples/Silverlight_WorkingWithMultipleModels.zip
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-generate-entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-linq-basics#HCreatingaquery
http://martinfowler.com/eaaCatalog/repository.html

