
Documentation - Code Sample - OData with Basic Authentication

Page 1 - Last modified on September 26, 2012 17:44

Contents

• Problem
• Solution

Securing your OData service comes in many forms. Here we will show you how to secure it using basic authentication and
authorization headers. You can read about other methods to secure your OData service here.

Note: This topic assumes that you understand how to enable OData.

• Platform: N/A
• Language: C#
• Download: Basic Authentication with ODataTour

Problem
You can secure your OData service with basic authentication using a custom DevForce IEntityLoginManager.

Solution
When you want to query your DevForce entities through an OData service, you usually want to create a DataServiceContext by
passing in the service Uri as follows:

C#Uri serviceRootUri = new Uri("http://localhost:9009/ODataService.svc");
var context = new NorthwindIBEntities(serviceRootUri);
var customer = context.Customers.FirstOrDefault();

The DataServiceContext has a SendingRequest event that is triggered when an Http request has been created. In this case,
the Http request is triggered on our Customers query. The SendingRequest event is where we want to create and add our
authorization headers.

C#context.SendingRequest += (o, requestEventArgs) => {
   var creds = username + ":" + password;
   var encodedCreds = Convert.ToBase64String(Encoding.ASCII.GetBytes(creds));
   requestEventArgs.RequestHeaders.Add("Authentication", "Basic" + encodedCreds);
};

Notice that we’re using basic authentication by encoding our credentials with base-64 digits.

On the server, we can intercept and validate the header in our LoginManager as follows:

C#public class MyLoginManager : IEntityLoginManager {
   public IPrincipal Login(ILoginCredential credential, EntityManager entityManager) {
     // Get the authentication header
     string authHeader = HttpContext.Current.Request.Headers["Authentication"];
     
     //Parse authentication header here
     var creds = ParseAuthHeader(authHeader);
     if (creds == null) {
       throw new LoginException(LoginExceptionType.NoCredentials, "Please supply login credentials");
      }
     // Validate the supplied credentials.
     var aNewCredential = new LoginCredential(creds[0], creds[1], "");
     if (!IsCredentialValid(aNewCredential ))
        throw new LoginException(LoginExceptionType.Other, "Invalid username or password");
     return new UserBase(new UserIdentity(aNewCredential .UserName));
    }
}

Note that the ILoginCredential supplied to the method will be null.  We created a second credential here to make passing the
credentials to our validation routine easier, but all that DevForce requires is that you return an IPrincipal, such as the UserBase,
from the Login method.

There's one other change you'll need to make to the DataService.  The EntityManager will by default use the singleton
DefaultAuthenticationContext, so to ensure that the credentials for each request are correctly validated we need to disable this
feature.  We do so by overriding the CreateDataSource method, as shown below: 

C#  protected override NorthwindIBEntities CreateDataSource() {
      var em = base.CreateDataSource();

http://msdn.microsoft.com/en-us/data/gg192997
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/odata-enable
/df2012samples/OData_BasicAuthentication.zip
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/authentication-details-server


Documentation - Code Sample - OData with Basic Authentication

Page 2 - Last modified on September 26, 2012 17:44

      em.Options.UseDefaultAuthenticationContext = false;
     return em;
    }


