
Documentation - Connect to multiple application servers

Page 1 - Last modified on August 15, 2012 17:22

Contents

• Using ServiceKeys
• Difference from data source extension and composition context
• The default key
• On the server
• Using a system.serviceModel

An n-tier client application may connect to more than one application server.

In most n-tier applications, the client application needs to communicate with only a single "host" of the EntityServer services.
 By "host" we mean the machine name, port, protocol and application name forming the URL information commonly found in
the <objectServer> element in your configuration file.  We can consider each "host" to be a separate application server.

Communicating with a single application server, to login, and perform queries and saves, is sufficient for many applications.
 But DevForce also allows a client application to work with multiple application servers, both at the same time and as needed
based on application requirements.  For example, your client application may need to work with HR services at site A while also
working with payroll services at site B.  Or maybe your application will sometimes connect to a local application server but at
other times needs to work with the server at headquarters.  (In all cases the application server is a DevForce EntityServer, not
custom or third party web services.)  

When your application needs to work with multiple application servers, you do so through something called a serviceKey. 

Using ServiceKeys
ServiceKeys provide address information for the application servers your client application may work with.  These keys are
defined in your configuration file and allow you to specify a name and address for each application server.  The serviceKey
provides additional flexibility in defining the application server over the fixed information in the <objectServer> element.  

You choose the serviceKey to use, and thus the application server, when you construct an EntityManager.

C#var entityManager = new NorthwindIBEntityManager(new EntityManagerContext(serviceKey: "foo"));

VBDim entityManager = New NorthwindIBEntityManager(New EntityManagerContext(serviceKey := "foo"))

That serviceKey name, here we've used the silly name of "foo", tells DevForce to look for a serviceKey with this name in the
configuration file to obtain the address of the application server.  (You can still use the <system.serviceModel> section to define
the service endpoints in advanced configurations, we describe that below.)

Here's the configuration information for the "foo" key:

XML <objectServer remoteBaseURL="http://www.contoso.com" serviceName="BigApp\EntityService.svc" serverPort="80" >
   <serviceKeys>
     <serviceKey name="foo" remoteBaseURL="http://foo.contoso.com" serviceName="SmallApp\EntityService.svc" serverPort="8080" />
   </serviceKeys>
 </objectServer>
 
An EntityManager constructed with this serviceKey will query and save to the application server located at the http://
foo.contoso.com address.  Other EntityManagers in the application can continue to communicate with the default application
server at http://www.contoso.com.

Difference from data source extension and composition context
In other topics we've discussed the use of multiple EntityServers.  An EntityServer is created to match the specifics of the
requesting EntityManager.  If you are using either a data source extension or custom composition context when you create your
EntityManager, then it will communicate with an EntityServer having those same characteristics.  How does this differ from
service keys?

When using either a data source extension or custom composition context your application will still communicate with the
same application server.  The address of the EntityService will be the same, and that EntityService will determine the specific
EntityServer to be used.  

With a serviceKey, an entirely different application server, and thus EntityService, will be used.  That application server might
be on a different machine altogether, or use a different port or protocol.  You can still use data source extensions and/or custom
composition contexts when using a serviceKey.     

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-entityserver#HServiceorServer3F
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-n-tier-other-client#HObjectServer
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HServiceKeyselement
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HObjectServerElement
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/create-entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-entityserver#HServiceorServer3F
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/create-entitymanager-datasource-extension#HConstructanEntityManagerwithaDataSourceExtension
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/discovery-context#HUsingaCompositionContext


Documentation - Connect to multiple application servers

Page 2 - Last modified on August 15, 2012 17:22

The default key
When constructing an EntityManager you can provide a serviceKey in the constructor arguments.  By default, if the serviceKey is
not provided then DevForce will use the default key to determine the application server it will use.  

The determination of this default is worth noting.  Generally the remoteBaseURL and other <objectServer> attributes will be
used to determine the default key.  (In Silverlight applications this information is set for you based on the address the XAP was
loaded from.)  If this information isn't defined then the serviceKeys are searched.  If a serviceKey named "default" is found (the
search is case-insensitive) then that serviceKey is used as the default, otherwise the first serviceKey defined is used as the default.

The following are different ways to specify your keys.  In each, the default key found by DevForce will be the same - the one
resolving to an address of http://www.contoso.com/Samples/EntityService.svc.

XML <objectServer remoteBaseURL="http://www.contoso.com" serviceName="Samples\EntityService.svc" serverPort="80" >
   <serviceKeys>
     <serviceKey name="Backup" remoteBaseURL="http://test.contoso.com" serviceName="OldSamples\EntityService.svc"
serverPort="8080" />
   </serviceKeys>
 </objectServer>
  

XML <objectServer>
   <serviceKeys>
     <serviceKey name="Default" remoteBaseURL="http://www.contoso.com" serviceName="Samples\EntityService.svc" serverPort="80" /
>
     <serviceKey name="Backup" remoteBaseURL="http://test.contoso.com" serviceName="OldSamples\EntityService.svc"
serverPort="8080" />
   </serviceKeys>
 </objectServer>
  

XML <objectServer>
   <serviceKeys>
     <serviceKey name="BOS1" remoteBaseURL="http://www.contoso.com" serviceName="Samples\EntityService.svc" serverPort="80" />
     <serviceKey name="Backup" remoteBaseURL="http://test.contoso.com" serviceName="OldSamples\EntityService.svc"
serverPort="8080" />
   </serviceKeys>
 </objectServer>
  

On the server
The purpose of ServiceKeys is to allow you to specify the various application servers your client application may communicate
with.  But, since it's often easier to copy configuration information between client and server config files, the server can also use
the serviceKeys in some configurations.

If an EntityServer is deployed as either a console application or Windows service then DevForce must determine a "base
address" for its services.  This address is determined based on the default key logic described above.  

Using a system.serviceModel
If you've found you need the full control the <system.serviceModel> configuration section offers, you can still use it to define
endpoints when using serviceKeys.  DevForce will look for endpoint names with the {ServiceKey}_{ServiceName} format.
 In other words, if your serviceKey name is "foo", then DevForce will look for endpoints named "foo_EntityService" and
"foo_EntityServer".  Note that the bindings do not need to be the same across serviceKeys, so for instance one application server
might use https while another uses http.  

XML<system.serviceModel>
  <client>
<!-- Endpoints for the "default" server -->
     <endpoint name="EntityService"
         address="http://localhost:9009/EntityService.svc/sl"
         binding="customBinding" bindingConfiguration="CustomBinding"
         contract="IdeaBlade.EntityModel.IEntityServiceContractAsync"
         />
     <endpoint name="EntityServer"

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/create-entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HObjectServerElement
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-console
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-windows


Documentation - Connect to multiple application servers

Page 3 - Last modified on August 15, 2012 17:22

         address="http://localhost:9009/EntityServer.svc/sl"
         binding="customBinding" bindingConfiguration="CustomBinding"
         contract="IdeaBlade.EntityModel.IEntityServerContractAsync"
         />
<!-- Endpoints using the "foo" serviceKey -->
     <endpoint name="foo_EntityService"
         address="http://fooserver:9009/EntityService.svc/sl"
         binding="customBinding" bindingConfiguration="CustomBinding"
         contract="IdeaBlade.EntityModel.IEntityServiceContractAsync"
         />
     <endpoint name="foo_EntityServer"
         address="http://fooserver:9009/EntityServer.svc/sl"
         binding="customBinding" bindingConfiguration="CustomBinding"
         contract="IdeaBlade.EntityModel.IEntityServerContractAsync"
         />
   </client>
   <bindings>
     <customBinding>
        <binding name="CustomBinding">
            <binaryMessageEncoding />
            <httpTransport maxReceivedMessageSize="2147483647" maxBufferSize="2147483647" />
        </binding>
     </customBinding>
   </bindings>
</system.serviceModel>


