
Documentation - Use CreateEntity() sparingly

Page 1 - Last modified on August 15, 2012 17:22

Contents

• Using "new"
• Introducing CreateEntity(...)
• The hidden EntityManager
• Generalizing entity creation with the non-generic overload
• Conclusion

While we recommend using "new" to create the entity within a factory method, the CreateEntity factory is available and
merits some consideration. This topic describes it, when you might want to use it, and why you probably don't.

Using "new"
We generally recommend that you call a constructor within a factory method when creating a new entity ... as we typically do
throughout this documentation. Here's a simple factory method that uses "new".

C#public Customer CreateCustomer()
{
 return new Customer(); // more to follow
}

VBPublic Function CreateCustomer() As Customer
 Return New Customer() ' more to follow
End Function

Introducing CreateEntity(...)
DevForce offers an alternative approach that uses the CreateEntity factory method of the EntityManager. Here's the same
example - or close to it - written with CreateEntity:

C#public Customer CreateCustomer(EntityManager manager)
{
 return manager.CreateEntity<Customer>(); // more to follow
}

VBPublic Function CreateCustomer(ByVal manager As EntityManager) As Customer
 Return manager.CreateEntity(Of Customer)() ' more to follow
End Function

Although this approach requires the help of an EntityManager, it doesn't actually add the new Customer to the manager. You
have to do that in a separate step. It differs substantively from "new" in these respects:

1. It uses the default constructor internally to instantiate the entity
2. It hides a reference to the EntityManager inside the created entity.

Many of us fail to see the advantage of these differences.

• It's often inappropriate or impossible to create a new entity with a default constructor as discussed in the topic on writing
a custom constructor. 

• The embedded EntityManager is hidden, silent, and (mostly) inaccessible until after the entity is added to cache.

The hidden EntityManager
The CreateEntity method embeds an EntityManager within the new entity. It's presence enables the following technique for
adding the entity to the EntityManager:

C#  cust.EntityAspect.AddToManager();  
 

VB  cust.EntityAspect.AddToManager() 

You can't call AddToManager on an entity you created with "new". You have to write:

C#  manager.AddEntity(cust);  
 

VB  manager.AddEntity(cust) 

The embedded EntityManager is otherwise inaccessible as demonstrated in these tests:

C#  var cust == manager.CreateEntity<Customer>();   // hides an EntityManager inside the entity

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~CreateEntity.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/write-a-custom-constructor
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/write-a-custom-constructor
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~AddToManager.html


Documentation - Use CreateEntity() sparingly

Page 2 - Last modified on August 15, 2012 17:22

 Assert.IsNull(cust.EntityAspect.EntityManager); // EntityManager is not visible
 cust.EntityAspect.AddToManager();               // adds the entity to the hidden EntityManager
 Assert.IsNotNull(
     cust.EntityAspect.EntityManager());          // now you see it.

VB Dim cust = manager.CreateEntity(Of Customer)() ' hides an EntityManager inside the entity
 Assert.IsNull(cust.EntityAspect.EntityManager) ' EntityManager is not visible
 cust.EntityAspect.AddToManager() ' adds the entity to the hidden EntityManager
 Assert.IsNotNull(cust.EntityAspect.EntityManager()) ' now you see it.

Generalizing entity creation with the non-generic overload
The non-generic overload of CreateEntity has potential in a few scenarios. It could be convenient if you were writing a general
utility that created entities as one of its duties.

C#public object CreateUserSelectedEntity(EntityManager manager, Type entityType)
{
  var anEntity = manager.CreateEntity(entityType);
 // do something with it
 return anEntity;
}

VBPublic Function CreateUserSelectedEntity(ByVal manager As _
  EntityManager, ByVal entityType As Type) As Object
 Dim anEntity = manager.CreateEntity(entityType)
 ' do something with it
 Return anEntity
End Function

It is modestly difficult to "new" a class when you don't know its type. The DevForce CreateEntity method does it without
ceremony.

Conclusion
Stick with "new" unless you are writing an entity creation utility.


