
Documentation - Advanced configuration options

Page 1 - Last modified on August 15, 2012 17:21

Contents

• N-tier client
• Default configuration
• Customizing configuration

• EntityServer
• Default configuration
• Customizing configuration

• Controlling compression
• Additional resources

The EntityServer is composed of several WCF services.  DevForce usually handles the WCF configuration for you on both
client and server, relieving you of the need to understand the complexities of WCF.  But in some circumstances you may want,
or need, to take control over this configuration.  Below we'll describe the configuration details and how you can customize them
for advanced scenarios.

N-tier client
By default, DevForce will use the <objectServer> information in your config file to configure communications from the client
to the EntityServer.  In Silverlight applications you won't usually have an app.config file, so the <objectServer> settings are
defaulted based on the URL from which the XAP was downloaded.  

You can also directly set objectServer properties on the IdeaBladeConfig.Instance  at startup if you don't wish to use a config
file.  

Default configuration

Before diving into customization, let's get a better understanding of the default configuration DevForce uses.  The rules are
fairly simple:

1. Communications will be established for a specific "service name".  This is usually either "EntityService" or
"EntityServer".  When a data source extension or custom composition context is used then the EntityServer name will
also contain that information, for example "EntityServer_dsext+ccname".

2. If a WCF <system.serviceModel> section is found in the config file (ServiceReferences.ClientConfig in Silverlight) with
an endpoint for the particular service name, then a  ChannelFactory is built from this configuration information.

3. If the <system.serviceModel> information was not present or invalid then programmatic configuration is performed.  
1. The Address is built from the information in the <objectServer> element, formatting a URI from the

RemoteBaseUrl, ServerPort and the specific service name.  In Silverlight, "/sl" is appended to the address if
not already present, since the default EntityServer endpoints all use this postfix to indicate Silverlight-specific
endpoints.

2. The Binding is built, based on the protocol scheme in the RemoteBaseUrl.  A CustomBinding is built from the
following:

1. The GZipMessageEncodingBindingElement to provide compressed binary messages.
2. A transport binding element appropriate to the protocol:

http - HttpTransportBindingElement
https - HttpsTransportBindingElement
net.tcp - TcpTransportBindingElement. In Silverlight this binding requires the System.ServiceModel.NetTcp
assembly, so DevForce does not provide programmatic configuration by default; you can still use tcp via the
serviceModel.
net.pipe - NamedPipeTransportBindingElement. Not supported in Silverlight.

3.  Whatever the transport, the MaxReceivedMessageSize is set to int.MaxValue, and except in Silverlight, the
ReaderQuotas are set to int.MaxValue for MaxArrayLength, MaxDepth and MaxStringContentLength.  The
ReaderQuotas are not supported by Silverlight.

3. The Contract is one of the DevForce service contracts, indicating either the EntityService or EntityServer.
4. The ChannelFactory is built from this information.

4. Except in Silverlight, a DataContractSerializerOperationBehavior is added to all contract operations to specify the
serializer to use (DCS or NDCS).

5. The ServiceProxyEvents OnEndpointCreated and OnFactoryCreated methods are called and the proxy is opened.  See
below for more information on the ServiceProxyEvents.  

Customizing configuration

We saw above that either the <system.serviceModel> determines the configuration or it's built programmatically.  There are two
ways to to customize this.

http://msdn.microsoft.com/en-us/library/ms731082.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-n-tier-client
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-entityserver
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HObjectServerElement
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.IdeaBladeConfig.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/create-entitymanager-datasource-extension#HConstructanEntityManagerwithaDataSourceExtension
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/discovery-context#HUsingaCompositionContext
http://msdn.microsoft.com/en-us/library/ms731354.aspx
http://msdn.microsoft.com/en-us/library/ms576132.aspx
http://msdn.microsoft.com/en-us/library/ee960151.aspx
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core.Wcf.Extensions~IdeaBlade.Core.Wcf.Extensions.GZipMessageEncodingBindingElement.html
http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.httptransportbindingelement.aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.httpstransportbindingelement.aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.tcptransportbindingelement.aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.namedpipetransportbindingelement.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmldictionaryreaderquotas.aspx
http://msdn.microsoft.com/en-us/library/ms576132.aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.description.datacontractserializeroperationbehavior.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datacontractserializer(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.netdatacontractserializer.aspx
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.ServiceProxyEvents.html


Documentation - Advanced configuration options

Page 2 - Last modified on August 15, 2012 17:21

1. Use the WCF <system.serviceModel> section to configure client communications.  See the samples on working with the
serviceModel in client applications.

2. Use a custom ServiceProxyEvents to modify existing configuration.  As we saw above, methods on this class are called
after the ChannelFactory is built, regardless of how it is built.  See the samples for a detailed description and examples. 

In some cases you may want to use both approaches at the same time.  For example, a <system.serviceModel> to configure
the communications elements needed, and then a ServiceProxyEvents to inject additional runtime-specific behaviors.  

In Silverlight, configuration options via the ServiceReferences.ClientConfig are limited, so doing additional modifications, as
permitted by Silverlight, through a ServiceProxyEvents can be helpful.  See the sample on adding Gzip support for an example.

EntityServer
DevForce will create a least two WCF services, one EntityService and one or more EntityServers.  The EntityService functions
as a gateway to an EntityServer:  a client application will handshake with it, and then all further communications it makes will
be with an EntityServer.  If you are using either a data source extension and/or custom composition context when you create an
EntityManager in your client application, then it will communicate with an EntityServer service having the same characteristics
and whose name reflects these settings. 

Default configuration

The same configuration rules are following for both EntityService and EntityServer services.  Configuration is also independent
of hosting type except where noted.

1. Determine the service name.  This is usually either "EntityService" or "EntityServer".  When a data source extension
or custom composition context is used then the EntityServer name will also contain that information, for example
"EntityServer_dsext+ccname".

2. Determine the base address(es) of the service.  
1. When hosted in IIS, the IIS application name and web site bindings determine the base addresses.  For example, if

both http and https bindings are enabled for a web site, then a base address is supplied by IIS for each.  
2. When hosted by either the ServiceService or ServerConsole:

1. If <baseAddresses> are defined for the service in the config file then they will be used, 
2. Otherwise information in the <objectServer> element is used, formatting a URI from the RemoteBaseUrl,

ServerPort and the specific service name. 
3. If a WCF <system.serviceModel> section is found in the config file with a <service> element for the particular

service name, then it will be used to configure endpoints and behaviors.  For the EntityServer, a service element named
"EntityServer" will be used if present and no element exists for the specific service name (e.g., "EntityServer_ABC").
 This allows the single service configuration to serve as a template for all EntityServer services which might be used,
while still allowing each EntityServer to use custom configuration when wanted.

4. Add service behaviors:
1. A behavior is added for the DevForce error handler to create DevForce-specific message faults.
2. Set AspNetCompatibilityRequirementsAttribute to allowed.
3. Add a ServiceThrottlingBehavior to set the MaxConcurrentCalls and MaxConcurrentSessions to 1000 for http/https

and 100 for tcp.
4. Add a DataContractSerializerOperationBehavior to all contract operations to specify the serializer to use (DCS or

NDCS).
5. If no endpoints were found for the service in the <system.serviceModel> then DevForce will add one or more endpoints

for each base address.  The SupportedClientApplicationType on the <serverSettings> determines which endpoints are
added.  This setting defaults to UseLicense, which means that endpoints will be added for whatever your license allows.

1. The Address is the base address.  
2. The Binding is built based on the protocol scheme for the address.  A CustomBinding is built from the following:

1. The GZipMessageEncodingBindingElement to provide compressed binary messages.
2. A transport binding element appropriate to the protocol:

http - HttpTransportBindingElement
https - HttpsTransportBindingElement
net.tcp - TcpTransportBindingElement.  This is not used for Silverlight endpoints.
net.pipe - NamedPipeTransportBindingElement. This is not used for Silverlight endpoints.

3.  Whatever the transport, the MaxReceivedMessageSize is set to int.MaxValue, and the ReaderQuotas are set
to int.MaxValue for MaxArrayLength, MaxDepth and MaxStringContentLength.  

3. A ServiceEndpoint is added using the base address, the binding created and the contract for the service.  For
Silverlight endpoints, a relative address of "/sl" is added.

4. The ServiceHostEvents OnEndpointCreated is called to allow the endpoint to be customized.
6. For Silverlight endpoints, an endpoint behavior is added for the SilverlightFaultBehavior to allow faults to be sent to the

Silverlight client.  DevForce considers an endpoint a "Silverlight endpoint" if it contains the "/sl" relative address.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-custom-client-servicemodel
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.ServiceProxyEvents.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-custom-client-configuration
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-add-gzip
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/create-entitymanager-datasource-extension#HConstructanEntityManagerwithaDataSourceExtension
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/discovery-context#HUsingaCompositionContext
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-iis
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-windows
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-console
http://msdn.microsoft.com/en-us/library/ms788995.aspx
http://msdn.microsoft.com/en-us/library/ms731354.aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.activation.aspnetcompatibilityrequirementsattribute.aspx
http://msdn.microsoft.com/en-us/library/ms522191.aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.description.datacontractserializeroperationbehavior.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datacontractserializer(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.netdatacontractserializer.aspx
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core.Configuration~IdeaBlade.Core.Configuration.ServerSettingsElement~SupportedClientApplicationType.html
http://msdn.microsoft.com/en-us/library/ee960151.aspx
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core.Wcf.Extensions~IdeaBlade.Core.Wcf.Extensions.GZipMessageEncodingBindingElement.html
http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.httptransportbindingelement.aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.httpstransportbindingelement.aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.tcptransportbindingelement.aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.namedpipetransportbindingelement.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmldictionaryreaderquotas.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-advanced-configuration
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.ServiceHostEvents.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core.Wcf.Extensions~IdeaBlade.Core.Wcf.Extensions.SilverlightFaultBehavior.html


Documentation - Advanced configuration options

Page 3 - Last modified on August 15, 2012 17:21

7. After all endpoints are processed ServiceHostEvents OnServiceHostCreated is called to allow customization of the service
and all endpoints before the ServiceHost is opened.

After all these efforts, you'll see messages in the server's log indicating the service name and the addresses it's listening on.
 For example, the following log entries show that the EntityService is listening on four endpoints.  Two base addresses were
supplied by IIS, http://myhost/BadGolf and https://myhost/BadGolf becasue both http and https bindings are set for the web
site; and two endpoints were created for each base address, an endpoint for Silverlight client applications and one for all other
applications.

Customizing configuration

We saw above that either the <system.serviceModel> determines the configuration or it's built programmatically.  There are two
ways to to customize this.

1. Use the WCF <system.serviceModel> section to configure the service and its endpoints.  See samples on working with
the serviceModel on the server.

2. Use a custom ServiceHostEvents to modify existing configuration.  As we saw above, methods on this class are called
after each programmatic endpoint is added, and again after the ServiceHost is built.  See the samples for a detailed
description and examples. 

In some cases you may want to use both approaches at the same time.  For example, a <system.serviceModel> to configure
the communications elements needed, and then a ServiceHostEvents to inject additional runtime-specific behaviors.  

As we saw above you can also control the endpoints created using the SupportedClientApplicationType setting in the
<serverSettings>.  For example, if your application will only have Silverlight clients yet you have an Enterprise license, you can
set the appropriate SupportedClientApplicationType setting so that only Silverlight endpoints are created.

Controlling compression
By default all communications between the n-tier client and EntityServer are compressed.  You can control the level of
compression - to prefer speed over compression factor or vice versa - to fine tune application communications.

To set the compression level, use the CommunicationSettings class.  For example:

C#IdeaBlade.Core.Wcf.Extensions.CommunicationSettings.Default.CompressionLevel = Ionic.Zlib.CompressionLevel.BestSpeed;

VBIdeaBlade.Core.Wcf.Extensions.CommunicationSettings.Default.CompressionLevel = Ionic.Zlib.CompressionLevel.BestSpeed 

The CompressionLevel enumeration has a range of possibilities from BestCompression to BestSpeed.  It also supports turning
off compression, although if you wish to turn off compression it's more efficient to change the bindings used.

On the EntityServer the CommunicationSettings.Default.CompressionLevel should be set in the global.asax when hosted in IIS;
on the client you can set this in the application startup code.  You can actually change the CompressionLevel at any time while
your application is running and the new level will be used for all further communications, but generally you should set this early
in your startup logic.  The level can also differ between client and server.

Additional resources
The ABCs of Endpoints

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-custom-server-servicemodel
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.ServiceHostEvents.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-custom-server-configuration
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HServerSettingselement
http://msdn.microsoft.com/en-us/library/ms733107.aspx

