
Documentation - Deploy as console app

Page 1 - Last modified on October 27, 2013 16:55

Contents

• Files and assemblies
• Configuration

• Database connection information
• Logging
• ObjectServer

• Using the ServerConsole
• Troubleshooting

The ServerConsole is provided with the DevForce installation to host the EntityServer services in a console application.

You'll usually use the ServerConsole only during development and testing when your planned deployment is as a Windows
Service.  The ServerConsole is a simple utility you can stop and start as needed during development to test your n-tier
application with a remote EntityServer.  

The ServerConsole is not intended to be used in production deployments.  

Files and assemblies
The following assemblies are always required:

IdeaBlade.Core.dll
IdeaBlade.EntityModel.dll
IdeaBlade.EntityModel.Edm.dll (version 7.2.2 and later: IdeaBlade.EntityModel.Edm.EF5.dll or
IdeaBlade.EntityModel.Edm.EF6.dll)
IdeaBlade.EntityModel.Server.dll
IdeaBlade.Linq.dll
IdeaBlade.Validation.dll

You'll also need the .config file:
ServerConsole.exe.config

If you're deploying a Code First model, you'll also need the following:

EntityFramework.dll
IdeaBlade.Aop.dll
PostSharp.dll

You'll of course also need all of your own "server-side" assemblies.  These are the assemblies holding your entity model(s),
and any custom extensions you've implemented.  

Don't forget .NET Framework 4.5.

Configuration
Did you notice above that the configuration file used here is named ServerConsole.exe.config?  This is because the executable
is named ServerConsole.exe and we're following standard .NET config file naming and discovery conventions.  (In Windows
Server 2003, the config file should be named ServerConsole.config.)

The config file will contain most of what's in your app.config file in your client application.  It's usually easiest to copy that
file and edit as needed.  

Database connection information

You'll usually need the <connectionStrings> for any databases your application uses.  (You can also use <edmKeys> instead of
or in addition to connectionStrings, but they may be deprecated in the future.)

If you are using a custom DataSourceKeyResolver  to dynamically provide connection information, you will not need to
define connection information in the config file.

Logging

You can use the <logging> element to set the file name and location of the debug log, or to turn logging off altogether.  You
also might want to archive log files.  Generally other logging attributes are not needed, or used only for debugging purposes.

Logging on the server is usually a good idea, since the diagnostics provided will help during testing and in resolving deployment
problems.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-windows
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-windows
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-first
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/extend-customize
http://www.microsoft.com/en-us/download/details.aspx?id=30653
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HEdmKeysElement
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.IDataSourceKeyResolver.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HLoggingElement


Documentation - Deploy as console app

Page 2 - Last modified on October 27, 2013 16:55

A typical config file might contain the following logging information:

XML<logging logFile="DebugLog.xml" archiveLogs="true" />
... to create a file named DebugLog.xml and archive files automatically.

Also see the Log topic for more information.

ObjectServer

You'll generally use the <objectServer> element to configure the service information for the EntityServer.  

At a minimum you'll have something like the following:

XML<objectServer remoteBaseURL="http://localhost"
              serverPort="9009"
              serviceName="EntityService"
              >
</objectServer>

If you've modified the defaults for either allowAnonymousLogin or loginManagerRequired then you'll also need to include a
<serverSettings> element with your settings.  The <clientSettings> apply only to the client application.

Note above that we're using port 9009, one you often see in DevForce samples, but there are no DevForce requirements for
this port number, and you can pick any free port.  You should, however, not change the service name.

You will usually need to allow the ServerConsole to communicate through your firewall on the port you've chosen.  For
example, in Windows Firewall the first time you run ServerConsole.exe from a specific folder and for a particular port number
you'll be prompted to unblock communications to allow the program to accept inbound communications on the port.  You can
also manually use your firewall software to open the port wanted, but this is less secure.  See Windows Firewall documentation
for more information.  

Although we show use of the http protocol above, you can also use net.tcp and https. If using https you'll need to create an
SSL certificate and map it to the port wanted - see this blog for more information.

As with any DevForce server or client, you can replace the <objectServer> configuration with a WCF <serviceModel>
section which gives you complete control over the configuration of communications. See the samples.

Using the ServerConsole
You can find the ServerConsole.exe in the Tools subfolder under the DevForce installation.  The executable does not have static
references to DevForce assemblies, and can be used with any version of DevForce 2012. 

All you need to do to use the ServerConsole is place all required files and assemblies in a folder, along with the
ServerConsole.exe and ServerConsole.exe.config, and run the ServerConsole executable.  As noted above you may get a firewall
prompt, which you should accept, and the EntityServer services will start.  The console window will display information about
the service configuration, or error information if the service could not start.  

You can then run your client application - on the same machine or another machine on the network.  Remember to make sure
that its <objectServer> settings match those of the server. 

You can terminate the services by closing the window, or pressing either Enter or Ctrl-C within the window.

Note that by default the ServerConsole "publishes" its trace messages.  See the logging topic for more information.

Troubleshooting
• You receive an AddressAccessDeniedException telling you that HTTP could not register your URL because you do not

have access rights to the namespace. This is caused because the executable is not running with administrator privileges
and HTTP addresses are secured resources.  You have two options:

1. Run the ServerService with an administrative account.
2. Run the Netsh command line tool to register the namespace with the account. The steps are as follows:

1. Open a command prompt using “Run as administrator” and enter:
2. netsh http add urlacl url=http://+:9009/ user=DOMAIN\USERNAME

...where “9009” is the port you are using for the EntityServer, and DOMAIN\USERNAME is the
system account to be granted access.

3. Also see http://blogs.msdn.com/drnick/archive/2006/10/16/configuring-http-for-windows-vista.aspx for
more information.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/log
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HObjectServerElement
http://windows.microsoft.com/en-US/windows-vista/Allow-a-program-to-communicate-through-Windows-Firewall
http://promx.wordpress.com/2008/06/30/ssl-with-self-hosted-wcf-service-part-1/
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-custom-server-servicemodel
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/traceviewer
http://+:9009/
http://blogs.msdn.com/drnick/archive/2006/10/16/configuring-http-for-windows-vista.aspx

