
Documentation - Using the DevForce Compatibility Pack

Page 1 - Last modified on November 08, 2017 13:23

Contents

• Overview
• What's Included

• Coroutines
• Partial Save
• Async API

• EntityManager extension methods
• EntityQuery and EntityScalarQuery extension methods
• Authenticator extension methods

Use the DevForce Compatibility Pack to ease the migration of existing DevForce 2010 projects using the "operation/
callback" asynchronous API or other capabilities not included in the new API.

Overview
For existing DevForce 2010 .NET and Silverlight projects which use the "operation/callback" asynchronous API or the "partial
save" capability, you can install the DevForce Compatibility Pack NuGet package.

Install the compatibility pack to each project which will use the backwards compatibility API.  The package adds the required
dependency, IdeaBlade.EntityModel.Compat, to the project.

The compatibility pack is only necessary if you are upgrading an existing DevForce 2010 application which uses the older
asynchronous API.  If you are developing a new DevForce application please do not use the compatibility pack, as the new
Task-based asynchronous pattern is much richer and easier to use.

What's Included
To use the backwards compatibility API, add a using/Imports statement to your code file for IdeaBlade.EntityModel.Compat.
 This namespace contains the extension methods and Coroutine support for the compatibility API.

Coroutines

Support for serial and parallel coroutines is included in the compatibility API.

The Coroutine.Start and Coroutine.StartParallel method overloads are unchanged from DevForce 2010.  What is different is
the asynchronous method signatures you'll use within your coroutines.

For example:

C#public void SampleCoroutine() {
  var op = Coroutine.Start(() => SampleCoroutineCore());
  op.Completed += (s, e) => {
   if (e.HasError) {
      e.MarkErrorAsHandled();
      MessageBox.Show("an error occurred");
    }
  };
}
private IEnumerable<INotifyCompleted> SampleCoroutineCore() {
 yield return _entityManager.Customers.Where(c => c.Country == "USA").ExecuteAsync(userCallback: null);
 yield return _entityManager.Employees.Where(e => e.Country == "USA").ExecuteAsync(userCallback: null);
}

Here we see that the ExecuteAsync methods require a userCallback argument, which was optional in DevForce 2010.
 This argument is required in order to disambiguate the method signature from the other, Task-based, signatures in the new
asynchronous API.  

Partial Save

A "partial" save can be used to persist a subset of the changed entities in the EntityManager cache.  It is not a recommended
practice and was not included in the newer DevForce API.  It is provided here in the compatibility API for applications written
in DevForce 2010 which still require this capability during their migration.

The partial save API, while providing an "older" feature, uses the "newer" DevForce API and does not return a SaveResult
unless requested.  The following EntityManager extension methods are provided:

Synchronous methods:

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/installing-devforce-2012
http://drc.ideablade.com/ApiDocumentation2012/IdeaBlade.EntityModel.Compat~IdeaBlade.EntityModel.Coroutine~Start.html
http://drc.ideablade.com/ApiDocumentation2012/IdeaBlade.EntityModel.Compat~IdeaBlade.EntityModel.Coroutine~StartParallel.html


Documentation - Using the DevForce Compatibility Pack

Page 2 - Last modified on November 08, 2017 13:23

• void SaveChanges(IEnumerable entities, SaveOptions saveOptions = null)
• SaveResult TrySaveChanges(IEnumerable entities, SaveOptions saveOptions = null)

Asynchronous methods:

• Task SaveChangesAsync(IEnumerable entities, SaveOptions saveOptions = null)
• Task<SaveResult> TrySaveChangesAsync(IEnumerable entities, SaveOptions saveOptions = null) 
• EntitySaveOperation SaveChangesAsync(IEnumerable entities, SaveOptions saveOptions, Action<EntitySaveOperation>

userCallback, object userState = null)
 

Async API

Asynchronous operations without a return result, such as ConnectAsync and ForceIdFixupAsync, now return a BasicOperation
instead of a BaseOperation.

In order to disambiguate method signatures from their task-based counterparts in DevForce, all async methods now require
the userCallback argument.  You can pass null/Nothing for the argument value.

Asynchronous operations may be cancelled, where the operation supports it, using the Cancel method on the operation.

EntityManager extension methods

The familiar asynchronous methods on the EntityManager in DevForce 2010 are provided, with a few minor signature changes.

Remember that LoginAsync and LogoutAsync from the EntityManager were deprecated in DevForce 2010 and are now
available on the Authenticator.

In order to disambiguate method signatures from their task-based counterparts in DevForce, all methods now require the
userCallback argument.  You can pass null/Nothing for the argument value.

For example, an asynchronous query:

C#var query = entityManager.Customers.OrderBy(c=> c.CompanyName).Take(10);
var op = entityManager.ExecuteQueryAsync(query, userCallback: null);
op.Completed += (o, e) => {
  var customers = e.Results;
};

VBDim Query = Manager.Customers.OrderBy(Function(c) c.CompanyName).Take(10)
Dim Op = Manager.ExecuteQueryAsync(Query, userCallback:=Nothing)
AddHandler Op.Completed, Sub(o, e)
 Dim Customers = e.Results
End Sub

And an asychronous save:

C#var op = entityManager.SaveChangesAsync(userCallback: null);
op.Completed += (o, e) => {
  var result = e.SaveResult;
};

VBDim Op = Manager.SaveChangesAsync(userCallback:=Nothing)
AddHandler Op.Completed, Sub(o, e)
 Dim Result = e.SaveResult
End Sub

EntityQuery and EntityScalarQuery extension methods

The ExecuteAsync extension methods on the IEntityQuery and IEntityQuery<T> are supported, and as with other extension
methods in the compatibility pack, require a userCallback argument.

C#var query = _entityManager.Customers.Where(c => c.Country == "France");
var op = query.ExecuteAsync(userCallback: null);
op.Completed += (o, e) => {
  var customers = e.Results;
};

The many scalar async extension methods are provided:  First, FirstOrDefault, FirstOrNullEntity, Single, SingleOrDefault,
SingleOrNullEntity, Count, LongCount, Min, Max, Sum, Average, Any, All.  They too require a userCallback argument to
disambiguate the methods from their task-based counterparts.

For example:

http://drc.ideablade.com/ApiDocumentation2012/IdeaBlade.EntityModel.Compat~IdeaBlade.EntityModel.BasicOperation.html


Documentation - Using the DevForce Compatibility Pack

Page 3 - Last modified on November 08, 2017 13:23

C#var op = _entityManager.Employees.AsScalarAsync().Count(userCallback: null);
op.Completed += (o, e) => {
  var employeeCount = e.Result;
};

Authenticator extension methods

The LoginAsync and LogoutAsync methods are defined for the Authenticator.  As with other methods in the compatibility pack,
the userCallback argument is now required.

The LogoutAsync method now returns a BasicOperation, instead of a BaseOperation.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/authentication-details-client

