
Documentation - Faking

Page 1 - Last modified on September 18, 2012 16:19

Contents

• Faking with CompositionContext.Fake
• Simple Faking
• Working directly with a fake backing store

• Local vs. remote stores
• Store methods

We've seen how DevForce supports discovery by context, something particularly useful in testing. DevForce also contains
built-in support for faking using this facility.

There are a few definitions of faking, but let's use one from Martin Fowler in his post "Mocks Aren't Stubs":  "Fake objects
actually have working implementations, but usually take some shortcut which makes them not suitable for production (an in
memory database is a good example)." 

Faking with CompositionContext.Fake
CompositionContext.Fake  is a composition context in which "fake" implementations of several important DevForce interfaces
are provided to simulate end-to-end query and save operations against a real backing store. Faking is also useful in facilitating
model-first development, and providing data and functionality for demo applications.

CompositionContext.Fake components include:

1. Id generation with the FakeIdGenerator to allow both temporary ids for new entities and translation to "real" ids when a
save is performed. 

2. An in-memory data store with the EntityServerFakeBackingStore.
3. Query functionality with the EdmQueryExecutorFake. 
4. Save functionality with the EdmSaveExecutorFake.

These are not stubs. They are rich implementation that provide functionality almost identical to that of their "real"
counterparts.  Faked queries and saves return virtually the same results you would expect from a real data store, but instead use
a fake data store, called the EntityServerFakeBackingStore .  Once you populate this store, you can issue standard queries and
saves from an EntityManager created for the context without any additional code.

Note that other DevForce extensions, such as IEntityLoginManager, are not faked, so either DevForce defaults or your custom
implementations will be used for those.  

You can create multiple named fake contexts, and custom contexts based on the standard CompositionContext.Fake. Each
unique context uses its own backing store. With a custom fake context you can supply additional fake functionality of your own.

Simple Faking
At the simplest, all you need to do is create an EntityManager for the default fake context and issue queries and saves against it.
 Of course, unless you've pre-populated the fake backing store queries will return no data until you've first saved some entities.

Here we create a new EntityManager and populate the backing store with a few test entities (remember to add a using
statement to IdeaBlade.Core.Composition):

C#  var em = new DomainModelEntityManager(compositionContextName: CompositionContext.Fake.Name);
  PopulateBackingStore(em);

VB Dim em As New DomainModelEntityManager(compositionContextName:= CompositionContext.Fake.Name)
  PopulateBackingStore(em)

C#private void PopulateFakeBackingStore(EntityManager em) {
  var customer = new Customer { CompanyName = "Test Company" };
  em.AddEntity(customer);
  var employee = new Employee { FirstName= "Fred", LastName = "Smith"};
  em.AddEntity(employee);
 for (int i = 0; i < 5; i++) {
    var salesOrder = new OrderSummary { Employee=employee, Customer = customer};
    em.AddEntity(salesOrder);
  }
  em.SaveChanges();
}

VBPrivate Sub PopulateFakeBackingStore(ByVal em As EntityManager)
   Dim customer = New Customer() With {.CompanyName = "Test Company"}
    em.AddEntity(customer)
   Dim employee = New Employee() With {.FirstName = "Fred", .LastName = "Smith"}

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/discovery-context
http://martinfowler.com/articles/mocksArentStubs.html#TheDifferenceBetweenMocksAndStubs
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.Composition.CompositionContext~Fake.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-first
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityServerFakeBackingStore.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager


Documentation - Faking

Page 2 - Last modified on September 18, 2012 16:19

    em.AddEntity(employee)
   For i As Integer = 0 To 4
       Dim salesOrder = New OrderSummary() With {.Employee = employee, .Customer = customer}
        em.AddEntity(salesOrder)
   Next
    em.SaveChanges()
End Sub

Once the backing store is populated with test data we can then use the EntityManager as usual. Here we clear it first, to
ensure that the EntityManager is querying from the backing store.

C#  em.Clear(); // clear cache; no memory of prior entities
  var query = em.Customers.Include(c => c.OrderSummaries)
    .Where(c => c.OrderSummaries.Any(os => os.Employee.FirstName == "Fred"));

VB  em.Clear() ' clear cache; no memory of prior entities
 Dim query As em.Customers.Include(Function(c) c.OrderSummaries).Where _
  (Function(c) c.OrderSummaries.Any(Function(os) os.Employee.FirstName = "Fred"))

Working directly with a fake backing store
You can access a fake backing store via a fake CompositionContext, for example:

C#var store EntityManager.CompositionContext.GetFakeBackingStore();

VBDim store = EntityManager.CompositionContext.GetFakeBackingStore()

Local vs. remote stores

Different backing stores are used in 2-tier vs. n-tier applications, EntityServerFakeBackingStore.Local  and
EntityServerFakeBackingStore.Remote .  The Local store, which is not available in Silverlight and Windows Store applications,
allows you to perform synchronous queries and saves when not using a remote EntityServer. The Remote store is used with n-tier
applications and any others using a remote EntityServer. Generally, you won't be concerned whether the store in use is local or
remote unless you're working directly with it, for example to clear or populate it.

Store methods

The entities stored and retrieved by the EntityServerFakeBackingStore are actually held in an EntityCacheState .  The
EntityServerFakeBackingStore provides methods to allow you to work directly with both it and the underlying EntityCacheState.
  You can use Save or SaveAsync to save the store to a file or stream, and Restore or RestoreAsync to restore data into the store.
 Clear or ClearAsync can be used to clear the store (for example to clear the store between tests). 

Note that only the asynchronous versions of these methods are available in async environments such as Silverlight and
Windows Store applications.

The EntityCacheState makes it easy to load test data into the backing store, possibly from a test database. The
EntityCacheState can be initially loaded from an EntityManager, and allows you to save to and restore from a file or stream.

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityServerFakeBackingStore+Local.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityServerFakeBackingStore+Remote.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityCacheState.html

