
Documentation - Build queries dynamically

Page 1 - Last modified on August 15, 2012 17:21

Contents

• The problem
• The ESQL option

LINQ expressions are strongly typed and static. They are easy to compose when you know the type of thing you want to
query at compile time. But they are difficult to create if you don't know the type until the application runs. Many applications
let the user specify the entity type to retrieve, the criteria to filter with, the properties to sort and group by. DevForce dynamic
query building components help you build and execute LINQ queries on the fly based on information supplied at
runtime.

The problem
"LINQ" stands for "Language Integrated Query". LINQ is designed to be written in the same manner as other code, rubbing
shoulders with procedural statements in the body of your application source files. C# and Visual Basic are statically typed
languages so the main pathway for writing LINQ queries is to compose them statically as strongly typed query objects that
implement the IQueryable<T> interface. Standard LINQ queries, and almost of the LINQ examples in the DevForce Resource
Center, are static and strongly typed. Here is a typical example:

C#IQueryable<Customer> customers = _myEntityManager.Customers;
var query = customers.Where(c => c.CompanyName = "Acme");

VBDim customers As IQueryable(Of Customer) = _myEntityManager.Customers
Dim query = customers.Where(Function(c) c.CompanyName = "Acme")

The _myEntityManager.Customers expression returns an instance of a query object that implements IQueryable<Customer>.
The strongly typed nature of the expression is what allows IntelliSense and the compiler to interpret the remainder of the
statement.

What if 'T' (Customer in this case) is not known until runtime; from a compiler perspective we no longer have an
IQueryable<T> but have instead just an IQueryable. And IQueryable, unfortunately, does not offer any of the extension methods
that we think of a standard LINQ; in other words, no Where, Select, GroupBy, OrderBy, Any, Count etc, methods.

How do we write a query when we don't have the type available at runtime?

C#var typeToQuery = typeof(Customer);
IQueryable<???> someCollection = << HOW DO I CREATE AN IQUERYABLE OF "typeToQuery"?>> ;
var query = somecollection.Where(<< HOW DO I COMPOSE A LAMBDA EXPRESSION WITHOUT A COMPILE TIME TYPE >>);

VBDim typeToQuery = GetType(Customer)
IQueryable(Of ???) someCollection = << HOW DO I CREATE AN IQUERYABLE OF "typeToQuery"?>>
Dim query = somecollection.Where(<< HOW DO I COMPOSE A LAMBDA EXPRESSION WITHOUT A COMPILE TIME TYPE >>)

A second issue can occur even if we know the type of the query but we have a number of 'where conditions' or predicates,
that need to be combined. For example

C#Expression<Func<Customer, bool>> expr1 = (Customer c) => c.CompanyName.StartsWith("A");
Expression<Func<Customer, bool>> expr2 = (Customer c) => c.CompanyName.StartsWith("B");

VBDim expr1 As Expression(Of Func(Of Customer, Boolean)) = _
 Function(c As Customer) c.CompanyName.StartsWith("A")
Dim expr2 As Expression(Of Func(Of Customer, Boolean)) = _
 Function(c As Customer) c.CompanyName.StartsWith("B")

It turns out that we can use either of these expressions independently, but it isn't obvious how to combine them.

C#var query1 = myEntityManager.Customers.Where(expr1); // ok
var query2 = myEntityManager.Customers.Where(expr1); // ok
var queryBoth = myEntityManager.Customers.Where(expr1 && expr2) // BAD - won't compile.

VBDim query1 = myEntityManager.Customers.Where(expr1) ' ok
Dim query2 = myEntityManager.Customers.Where(expr1) ' ok
Dim queryBoth = myEntityManager.Customers.Where(expr1 AndAlso expr2) ' BAD - won't compile.

The ESQL option
You can construct queries on the fly using DevForce "pass-thru" Entity SQL (ESQL). ESQL queries are strings that look like
standard SQL, differing primarily (and most obviously) in their references to entity types and properties rather than tables and
columns. You can build ESQL queries by concatenating strings that incorporate the runtime query critieria you gleaned from
user input.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/LINQ
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/LINQ
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/passthruesql-query

Documentation - Build queries dynamically

Page 2 - Last modified on August 15, 2012 17:21

Most developers prefer to construct LINQ queries with DevForce for two reasons:

1. Building syntactically correct ESQL strings can be more difficult to do correctly than writing DevForce dynamic queries.
The dynamic query approach affords a greater degree of compiler syntax checking and the structure of the query is more
apparent. You often know most of the query at design time; when only some of the query is variable you can mix the
statically typed LINQ statements with the dynamic clauses ... as described in the topic detail.

2. ESQL queries must be sent to and processed on the server. You cannot apply ESQL queries to the local entity cache.
LINQ queries, on the other hand, can be applied to the database, to the cache, or to both. This is as true of dynamic
LINQ queries as it is of static queries. For many developers this is reason enough to prefer LINQ to ESQL.

