Documentation - Modify

Contents

e QOverview

* The generated setter
¢ Miscellaneous topics

Modify entities in the entity cache.

Overview

Modifications to your entities in cache is a straightforward process. You've loaded entities into the EntityManager cache -

usually by querying for them, but also by creating and saving new entities, importing entities from another EntityManager, and
by loading a previously saved snapshot.

However the entities got there, you can then modify them as needed. These modifications will often be through your UI via
data binding to the properties of your entities, allowing user changes to be pushed into the properties.

To persist your changes to the data store, you'll call one of the SaveChanges overloads on the EntityManager.
The generated setter

Most properties of your entities have public getters and setters. You've set the access in the EDM Designer, and the generated
code has dutifully carried out your wishes:

public string CompanyName {

get { return PropertyMetadata. CompanyName.GetValue(this); }

set { PropertyMetadata. CompanyName.SetValue(this, value); }

Public Property CompanyName() As String

Get
Return PropertyMetadata.CompanyName.GetValue(Me)

End Get

Set(ByVal value As String)
PropertyMetadata. CompanyName.SetValue(Me, value)

End Set

End Property

}

When the property is data bound, both its getter and setter will be invoked to retrieve and set the value.
To change a property value, you'll generally use the property setter,

ImyCustomer.Compa.nyName = "Emeryville Eats";

ImyCustomer.Compa.nyName = "Emeryville Eats"

The first modification to an unchanged entity causes its EntityState to become Modified. 1f you're working with a newly
created entity, its EntityState will remain as Added. Use the EntityAspect for the entity to see its current state.

Every time a property is modified DevForce will automatically raise a PropertyChanged event for the specific property name.
Data bound controls will listen for these events to refresh the display.

We saw the set pipeline in the "get and set a property" topic. Along with BeforeSet and AfterSet property interception,
validation may be performed, and a number of events are raised in addition to PropertyChanged.

Miscellaneous topics
Thread safety

Like the EntityManager, an entity is not thread-safe. Unlike the EntityManager, DevForce won't try to detect that the entity is
being used on multiple threads. So if you decide to have a background worker massage your entities while the application user
is editing them in the UI, you're writing your own recipe for disaster. If you need to use an EntityManager and its entities across

threads, the best thing to do is import the entities into another manager, so that each thread has its own EntityManager to work
with.

Modifying EntityKey properties

Page 1 - Last modified on August 15, 2012 17:23


http://drc.ideablade.com/devforce-2012/bin/view/Documentation/start-entity-cache
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entities-import
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entity-snapshot-changes
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/display
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-member-visibility
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityState.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityaspect
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitystate
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entity-set-a-property
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entities-import

Documentation - Modify

Once at entity has been created and saved, you cannot modify its EntityKey. You'll receive an exception when saving the
change if you try. If you do find you need to modify the key, you can clone the original entity, set the new EntityKey and add

the clone to the EntityManager, and delete the original entity.

All entities implement ICloneable via an explicit interface implementation, so you must first cast the entity to /Cloneable, for
example:

ICustomer customerCopy = ((ICloneable)aCustomer).Clone() as Customer;
ICustomer customerCopy = ((ICloneable)aCustomer).Clone() as Customer
Changing concurrency properties

Concurrency property values are often set by the data store - for example via a database trigger or a timestamp column - or
with the DevForce "auto" settings. But you can also set the new concurrency value in your application code. Just remember to
set the ConcurrencyStrategy to Client, and you can then set the property value as wanted, for example:

IaCustomer.LastChangeDt = DateTime.Now.ToUniversal Time();
IaCustomer.LastChangeDt = DateTime.Now.ToUniversal Time()

Page 2 - Last modified on August 15, 2012 17:23


http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityKey.html
http://msdn.microsoft.com/en-us/library/system.icloneable.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save-concurrency

