
Documentation - Undo changes

Page 1 - Last modified on August 15, 2012 17:21

Contents

• The RejectChanges method
• Access to "Undo" information
• Undo of a change to a navigation property that returns a list

Undo pending (unsaved) changes to a single entities, selected entities, or all entities in cache by calling one of the
RejectChanges methods. In addition, DevForce entities also support the IEditableObject interface which allows for the undo of
changes within an "editing" context"

The RejectChanges method
An application can undo changes made to individual entity via the EntityAspect.RejectChanges method. The same operation
can be performed against all of the relevent entities within an EntityManager (all modified, deleted, or added entities) via the
EntityManager.RejectChanges method.

This is a single level undo. Undoing a pre-existing object, whether added, modified or marked for deletion, restores it to its
state when last retrieved from the data source;

The following table describes what happens to an entity in any given state when a RejectChanges call is made on it.

Original
EntityState

EntityState
After RejectChanges

Other side effects

Modified Unchanged Original values become current values

Added Detached Entity gets removed from the cache (as if it
had never been Added).

Deleted Unchanged Entity gets "undeleted"

Unchanged Unchanged Nothing actually happens here.

Detached Detached Nothing actually happens here.

There is no undo of an undo.

DevForce Entities also implement the .NET IEditableObject interface. This interface provides for a second form of undo that
is commonly utilized by UI controls when binding directly to an entity. By convention this interface is implemented explicitly
and therefore requires casting.

Access to "Undo" information
DevForce effectively maintains a copy of each entities "original" version. When you access the properties of an entity, either
via a get or set operation, you are accessing the "default" version of the entity. The property values of the "original", as well
as a "proposed" version when inside of an IEditableObject edit session, however, are available as well. The values for any data
property of an object are available via either of the following two overloads of the EntityAspect.GetValue method. This is
discussed in more detail here.

C#public Object GetValue(String propertyName, EntityVersion version);
public Object GetValue(DataEntityProperty dataEntityProperty, EntityVersion version);

VBPublic Function GetValue(ByVal propertyName As String, ByVal version As EntityVersion) As Object
End Function
Public Function GetValue(ByVal dataEntityProperty As DataEntityProperty, ByVal version As EntityVersion) As Object
End Function

This value returned from the original version is usually exactly what was queried from the database, although it is possible to
update the "original" to match the "current" version via either the EntityAspect.AcceptChanges or EntityManager.AcceptChanges
method calls.

EntityVersion is an enumeration that with the following values:

Value Description

Default The default version for the state of the entity. This is a version that
is used to actually reference another version based on the state of the
entity. A version of Default will almost always mean Current with
the two exceptions being

• when an object is within an IEditableObject session, the
default version is Proposed.

• when an object has an EntityState of Deleted, its default
version is Original.

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityAspect~RejectChanges.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~RejectChanges.html
http://msdn.microsoft.com/en-us/library/system.componentmodel.ieditableobject.aspx
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityAspect~GetValue.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entity-versions
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityAspect~AcceptChanges.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~AcceptChanges.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityVersion.html

Documentation - Undo changes

Page 2 - Last modified on August 15, 2012 17:21

Original The original version of the entity from when it was last queried, saved
or had AcceptChanges called on it.

Current The most recent version of the entity, outside of an IEditableObject
session.

Proposed The value of the entity when within an IEditableObject session.

Undo of a change to a navigation property that returns a list

The RejectChanges method basically returns an entity to the state it was in when it was last queried or saved. If other related
objects are associated with this entity by being added to or removed from a "list" navigation property then the RejectChanges
call will not have any effect on the collection returned by the property. This is because information about what entities are
associated with another entity is not considered part of the persistent state of the entity except in the case where a foreign key
reference id exists (or in case of a many-many relationship). Since most relationships do have a foreign key defined on one side
or the other of the relationship it is often sufficient to call RejectChanges on the entities on both sides of a relationship in order
to restore the "graph" to an earlier state.

Another approach is to use the rollback mechanism described under the "Snapshot changes" topic.

