Documentation - Inspect original values

Contents

¢ Data Property Versioning
* Seeing is believing

* The Original version
¢ The Proposed version

¢ The Default
» Asking for a version that isn't defined
* The Entity Version Enum

You can inspect the original version of a data property value even if the entity is in a modified or deleted state.

Normally when you read an entity data property, DevForce returns the "current" value. Internally DevForce maintains several
versions of each data property's value: the current version (with a pending change if any), its original version (the value as it
was when the entity was last retrieved or saved), and a proposed version (for a change that is no yet recorded). This topic covers
the EntityVersion enumeration and how you use it in combination with the GetValue method to inspect specific versions of
property data.

Data Property Versioning

When you undo changes you've made to a modified entity, DevForce reverts the entity's data properties to their "original"
values.

DevForce maintains more than one value per data property. In fact, it may hold up to three versions of the property value : the
current, the original, and a proposed version.

The Current version is the one you see most of the time. You won't often want to look at other versions. You'll be happy
to know the original is there somewhere, standing by in case you "undo". But there may come a time, perhaps while writing
validation logic that concerns transitions from one state to another, when you want to examine the other versions. This topic
explains the versions in some detail and shows how you can inspect them.

DevForce only versions "data properties”, the properties that you persist to the database. It doesn't version navigation properties
nor the custom properties that you wrote.

Seeing is believing

This is easier to talk about with an example. Let's write a simple statement using the CompanyName property of an umodified
Customer object:

I originalName = testCustomer.CompanyName;

I originalName = testCustomer.CompanyName
The "originalName" variable is assigned the Current version of the CompanyName property.

Technically, the CompanyName property returns the Default version which might be other than the Current under different
circumstances. See below.

Because this entity is unmodified, the Current version is the same as the Original version which is why we called the variable,
originalName.

Let's change the Current version:

I testCustomer.CompanyName = newName = "New Name";

I testCustomer.CompanyName = newName = "New Name"

The current CompanyName will be newName; the original will remain originalName. To prove it, we'll use the Entity Aspect
to go under the hood. Entity Aspect has a GetValue method with an overload that accepts one of the EntityVersion enums.

/ Get the current and original values

var curVal = (string) testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Current);
var origVal = (string) testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Original);
Assert. AreEqual(newName, curVal);

Assert. AreEqual(originalName, origVal);

Assert.AreNotEqual(curVal, origVal); // driving the point home.

' Get the current and original values

Dim curVal = CStr(testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Current))
Dim origVal = CStr(testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Original))
Assert.AreEqual(newName, curVal)

Assert. AreEqual(originalName, origVal)

Page 1 - Last modified on August 15, 2012 17:22

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityVersion.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityAspect~GetValue.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entity-undo
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityVersion.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityaspect

Documentation - Inspect original values

Assert. AreNotEqual(curVal, origVal) ' driving the point home.
Let's detach the entity and test the versions again:

/I Hold onto its current manager

var manager = testCustomer.Entity Aspect.EntityManager;

/I Detach

testCustomer.Entity Aspect.RemoveFromManager();

/I Get the current and original values again

curVal = (string) testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Current);
origVal = (string) testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Original);
// Both values are available, even in the detached state

Assert. AreEqual(newName, curVal);

Assert.AreEqual(originalName, origVal);

' Hold onto its current manager

Dim manager = testCustomer.Entity Aspect.EntityManager

' Detach

testCustomer.Entity Aspect. RemoveFromManager()

' Get the current and original values again

curVal = CStr(testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Current))
origVal = CStr(testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Original))
' Both values are available, even in the detached state

Assert. AreEqual(newName, curVal)

Assert. AreEqual(originalName, origVal)

DevForce entities are "self-tracking". They retain both their current and original values even when detached from an
EntityManager. We can serialize them, deserialize them, hand them around, import them in another EntityManager, or re-attach
them to their former manager like this:

/I Re-attach **and** ensure its //[[EntityState>>EntityState]]// is "modified"

manager. AttachEntity(testCustomer);

testCustomer.Entity Aspect.SetModified();

/ Get the current and original values again

curVal = (string) testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Current);
origVal = (string) testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Original);
/I We've restored the modified entity

Assert.IsTrue(testCustomer.Entity Aspect.EntityState.IsModified());

Assert. AreEqual(newName, curVal);

Assert. AreEqual(originalName, origVal);

' Re-attach **and** ensure its //[[EntityState>>EntityState]]// is "modified"
manager. AttachEntity(testCustomer)
testCustomer.Entity Aspect.SetModified()
' Get the current and original values again
curVal = CStr(testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Current))
origVal = CStr(testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Original))
' We've restored the modified entity
Assert.IsTrue(testCustomer.Entity Aspect.Entity State. IsModified())
Assert.AreEqual(newName, curVal)
Assert. AreEqual(originalName, origVal)

Finally let's undo the pending changes and check the values again:

testCustomer.Entity Aspect.RejectChanges(); / undo

/I Get the current and original values again

curVal = (string) testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Current);
origVal = (string) testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Original);
// Back to the initial unmodified entity

Assert.IsTrue(testCustomer.Entity Aspect.EntityState.IsUnchanged());

Assert. AreEqual(originalName, curVal); // current restored to original

Assert. AreEqual(originalName, origVal);

Assert.AreEqual(curVal, origVal); ~ // driving the point home.

testCustomer.Entity Aspect.RejectChanges() ' undo

' Get the current and original values again

curVal = CStr(testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Current))
origVal = CStr(testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Original))
' Back to the initial unmodified entity

Assert.IsTrue(testCustomer.Entity Aspect.EntityState. IsUnchanged())

Assert. AreEqual(originalName, curVal) ' current restored to original

Assert. AreEqual(originalName, origVal)

Assert. AreEqual(curVal, origVal) ' driving the point home.

Page 2 - Last modified on August 15, 2012 17:22

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entities-import

Documentation - Inspect original values

The Original version

The Original value is the value retrieved from the database. Newly added entities don't have an Original value. They have a
Current value. They get an Original value when you save.

You can simulate a save by calling EntityAspect.AcceptChanges. You should be wary of doing that although it can be useful in
tests.

The Proposed version

DevForce entities implement System. ComponentModel.IEditableObject. That means they have an additional level of do-undo.
IEditableObject has three methods:

Methods Summary

BeginEdit() Begin editing the object. An edit session is open. While open, changes
go into the Proposed version.

CancelEdit() Cancel the edit. The edit session closes and the Proposed versions are
discarded.

EndEdit() Ends the edit session and pushes the Proposed version values into the

Current version.
You can inquire about the Proposed version any time.

I var proposed = (string) testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Proposed);

I Dim proposed = (string) testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Proposed)

The Default

There is a "Default" Entity Version enum. Default is not really a version. Rather, it maps to the version whose value would be
returned by calling the property directly as we see in this example:

var value = testCustomer.CompanyName;
var default = (string) testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Default);
Assert. AreEqual(value, default); // Always true.

Dim value = testCustomer.CompanyName
Dim default] = CStr(testCustomer.Entity Aspect.GetValue("CompanyName", Entity Version.Default))
Assert. AreEqual(value, defaultl) ' Always true.

That's a tautology. You want to know how the Default is mapped.

Default maps to ... when ...

Current the entity is added, modified, unchanged, or detached.

Original the entity is deleted.

Proposed the entity is in the middle of an IEditableObject editing session.

Asking for a version that isn't defined

What if you ask for the Original of an added entity? An added entity doesn't have an Original value. Rather than throw an
exception or return a strange value, DevForce returns the Default version.

DevForce always returns the Default version if the version asked for is undefined.

To give another example, the Proposed version is undefined unless the entity is in an open IEditableObject edit session. If
there is no open edit session and you ask for the Proposed value, you get ... the Default value.

The EntityVersion Enum

EntityVersion is an enum whose values you should now appreciate.

Version Summary
Current The value that would be saved to the database.
Original The value as it was when the entity was last queried or saved.

Page 3 - Last modified on August 15, 2012 17:22

http://msdn.microsoft.com/en-us/library/system.componentmodel.ieditableobject.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.ieditableobject.beginedit.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.ieditableobject.canceledit.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.ieditableobject.endedit.aspx

Documentation - Inspect original values

Proposed A changed value within an open IEditableObject session. It becomes
the current value when the session is closed by a call to EndEdit.

Default Always the same as the property value. It is usually Current; it is
Proposed during an IEditableObject edit session and Original for a
Deleted entity.

Entity Version is a flag enumeration, meaning you can 'OR' the values together to form a composite Entity Version value for
search purposes.

Page 4 - Last modified on August 15, 2012 17:22

