
Documentation - Query by EntityKey

Page 1 - Last modified on August 15, 2012 17:22

Contents

• The EntityKeyQuery
• Creating an EntityKeyQuery
• Disadvantages of the EntityKeyQuery

• Query by Id

The EntityKey of an entity defines the unique identity of an entity. You can query by EntityKey using the EntityKeyQuery.

The EntityKeyQuery
Because an EntityKey by definition uniquely identifies a single entity, the EntityKeyQuery is optimized in a way that other query
types cannot be.  The EntityManager, given an EntityKey, can determine by looking in its entity cache whether or not an entity
with this key has already been fetched from the database.  For other query types, DevForce uses its query cache to determine
whether a query has already been executed.

The determination of whether a given query has already been executed against a database is a DevForce performance
enhancement. Even with an EntityKeyQuery, this optimization can be suppressed by using the DataSourceOnly QueryStrategy.

Creating an EntityKeyQuery

There are two basic ways to create an EntityKeyQuery:  with an EntityKey, or with a list of EntityKeys called an EntityKeyList.  

You might wonder how to obtain an EntityKey since it's a property of an Entity (through its EntityAspect).  You can construct
an EntityKey if you know the entity type and the key values.

For example, if you want to build an EntityKey for Employee 1, you could do the following:

C#var key = new EntityKey(typeof(Employee), 1);

VBDim key = New EntityKey(GetType(Employee), 1)

You can then build the EntityKeyQuery for this key.  One easy way is to use the helper method ToKeyQuery:

C#var query = key.ToKeyQuery();

VBDim query = key.ToKeyQuery()

Or using the EntityKeyQuery constructor:

C#var query = new EntityKeyQuery(key);

VBDim query = New EntityKeyQuery(key)

Building an EntityKeyQuery from a list of EntityKeys is similar.  An EntityKeyList is simply a strongly-typed collection of
EntityKeys.  All keys in the list must be for the same type or abstract type.

C#var key1 = new EntityKey(typeof(Employee), 1);
var key2 = new EntityKey(typeof(Employee), 2);
var keyList = new EntityKeyList(typeof(Employee), new[] { key1, key2 });

VBDim key1 = New EntityKey(GetType(Employee), 1)
Dim key2 = New EntityKey(GetType(Employee), 2)
Dim keyList = New EntityKeyList(GetType(Employee), { key1, key2 })

You can create the EntityKeyQuery from the list in familiar ways:

C#var query = keyList.ToKeyQuery();
... or
var query = new EntityKeyQuery(keyList);

VBDim query = keyList.ToKeyQuery()
'...or
Dim query = New EntityKeyQuery(keyList)

With the query in hand then you can then do many of the usual things you might do with a query.  The EntityKeyQuery is not a
LINQ query so not all features will be available to it, but you can set its QueryStrategy and EntityManager, and execute it via the
ExecuteAsync or ExecuteQueryAsync methods. 

Because the EntityKeyQuery is not a generically typed class, its result is a simple IEnumerable. You can cast the result an
IEnumerable<T>.  

C#var employees = entityManager.ExecuteQuery(query).Cast<Employee>();

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityKey.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/start-entity-cache
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-cache
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.QueryStrategy~DataSourceOnly.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.QueryStrategy.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityKeyQuery.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityKeyList.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityQueryExtensions~ExecuteAsync.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~ExecuteQueryAsync.html


Documentation - Query by EntityKey

Page 2 - Last modified on August 15, 2012 17:22

VBDim employees = entityManager.ExecuteQuery(query).Cast(Of Employee)()

C#entityManager.ExecuteQueryAsync(query), op => {
  var items = op.Results.Cast<Employee>();
});

VBDim employees = entityManager.ExecuteQuery(query).Cast(Of Employee)()

Disadvantages of the EntityKeyQuery

While the EntityKeyQuery has its uses, it has some pretty substantial shortcomings when compared with a standard LINQ query.
 The biggest of these is that the EntityKeyQuery is not composable.  This means that we cannot apply any additional restrictions,
projections, ordering etc. on these queries. We can of course perform all of the operations on the results of an EntityKeyQuery
after the query query returns but the server will have still needed to perform the entire query. 

The second disadvantage of the EntityKeyQuery is that it is really only intended for small numbers of EntityKeys. The reason
for this is that these methods are implemented so that they in effect create a large "IN" or "OR" query for all of the desired
entities by key. The query expression itself can therefore become very large for large numbers of entities. Expressions that are
this large will have performance impacts in both serialization as well as query compilation. For those cases where very large
numbers of entities need to be refreshed, it is usually a better idea to write a "covering" query that is much smaller textually
but returns approximately the same results. You may find that even though you return more entities than are needed with this
covering query, the resulting overall performance is still better.

Query by Id
You might wonder how an EntityKeyQuery differs from a simple LINQ query by Id.  For example, instead of:

C#var key = new EntityKey(typeof(Employee), 1);
var query = key.ToKeyQuery();

VBDim key = New EntityKey(GetType(Employee), 1)
Dim query = key.ToKeyQuery()

... we could instead have built an EntityQuery:

C#var query =  entityManager.Employees.Where(e => e.EmployeeID == 1);
//.. more useful, use an EntityQuery with FirstOrNullEntity()
var emp =  entityManager.Employees.FirstOrNullEntity(e => e.EmployeeID == 1);

VBDim query = entityManager.Employees.Where(Function(e) e.EmployeeID = 1)
'.. more useful, use an EntityQuery with FirstOrNullEntity()
Dim emp = entityManager.Employees.FirstOrNullEntity(Function(e) e.EmployeeID = 1)
The primary difference to DevForce is that it doesn't know that the EntityQuery is querying only by the EntityKey value, and
will thus treat the query as any other query in terms of optimization:  it will look for the query in the QueryCache and if not
present send the query to the datastore, even if the queried entity was already in the entity cache.  With the EntityKeyQuery,
DevForce will first search the entity cache for the requested entity, and only if not present send the query to the datastore.

A second difference is that the LINQ query allows you to return a null entity if the requested entity was not found, while the
EntityKeyQuery will return an empty enumeration.

Another difference is that the EntityQuery is composable, so you can use all standard LINQ operators supported by the
EntityQuery

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/LINQ
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/null-entity#HThenullentity

