
Documentation - The EntityManager is not thread-safe

Page 1 - Last modified on August 05, 2014 10:18

Contents

• The EntityManager is not thread safe
• AuthorizedThreadId and the EntityManager's home thread
• EntityManagers on ASP Clients
• Disabling thread id checking
• Customize the thread id check
• Entities are not thread safe either

The EntityManager is not thread-safe and neither are entities. An EntityManager throws an exception if you try to use it on
multiple threads. 

This topic touches upon the challenges and risks of cross-threading and describes how you use the AuthorizedThreadId to
control which thread an EntityManager calls home.

The EntityManager is not thread safe
The EntityManager is not thread-safe. 

The RIA Services DomainContext, the Entity Framework ObjectContext, and the NHibernate Session classes aren't thread-safe
either.

Internally the EntityManager maintains mutable collections of mutable objects. That is in the very nature of entities and of the
components with which you manage them. They cannot be made thread safe.

You may think you need to write background tasks to improve performance. You generally do not. The EntityManager can
perform many operations asynchronously for you.

Perhaps you want to retrieve several large entity collections in background. You can launch multiple asynchronous queries
from a single EntityManager running on the main thread; DevForce will handle the background threading and marshal the
results back to the main thread safely. See the topic on asynchronous queries.

AuthorizedThreadId and the EntityManager's home thread
An EntityManager remembers the id of the thread on which it was created. This identifies its home thread. 

The EntityManager's AuthorizedThreadId property tells you what thread id that is.

You won't care about this id as long as you stay clear of multi-threaded scenarios. Unfortunately, some times you can't. Two
scenarios come to mind:

1. Automated MS Tests of asynchronous queries 
2. ASP.NET clients that maintain an EntityManager across requests.

In both cases, the EntityManager can be called on a thread other than the thread on which it was created. That is usually a
big, red "danger" flag.  It turns out to be safe in these "free threading" scenarios because the EntityManager will never be called
on its original thread again.

Of course the EntityManager doesn't know that. It will throw an exception (see below) when called on the new thread,
because it assumes the worst and fears that concurrent multi-threaded access may occur.  We have to tell it that its home
thread has changed which we do by setting its AuthorizedThreadId property to the id of the new thread. Here's how to set the
AuthorizedThreadId to the currently executing thread:

C#manager.AuthorizedThreadId = System.Threading.Thread.CurrentThread.ManagedThreadId;

VBmanager.AuthorizedThreadId = System.Threading.Thread.CurrentThread.ManagedThreadId

A moment ago you read: "the EntityManager will never be called on its original thread again."

We recommend that you be deeply suspicious of any such claim. You may trust ... but you should verify.

Fortunately, you get that verification for free when you change the AuthorizedThreadId. If something calls upon the
EntityManager back on the original thread, the EntityManager will throw an exception ... because the original thread is no
longer the home thread. Let's try it.

C#// Now executing on original thread with Id=18
// Change the home ThreadId to a phoney
manager.AuthorizedThreadId = 1234;
// Call the EntityManager on thread Id=18
Manager.Customers.ExecuteAsync(); // Throws exception

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/program-asynchronously
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/asynchronous-queries
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~AuthorizedThreadId.html


Documentation - The EntityManager is not thread-safe

Page 2 - Last modified on August 05, 2014 10:18

VB' Now executing on original thread with Id=18
' Change the home ThreadId to a phoney
manager.AuthorizedThreadId = 1234
' Call the EntityManager on thread Id=18
Manager.Customers.ExecuteAsync() ' Throws exception

ExecuteAsync throws an exception:

Customers query failed with exception: System.InvalidOperationException: An EntityManager can only execute
on a single thread. This EntityManager is authorized to execute on the thread with id=’1234’; the requested
operation came from the thread with Id=‘18’.  ...

EntityManagers on ASP Clients
In most cases, an ASP.NET web application developers should create a new EntityManager for each request.

However, when writing a "wizard" that carries user data forward from request to request, some developers choose to hold an
EntityManager in an in-memory Session variable. That way, they can reuse cached entities across requests rather than have to
struggle with managing temporary storage for changed entities.

There are other, perhaps safer and more scalable ways, to address this scenario.

In essence, you store the EntityManager in Session just before the current request ends; when the follow-up request begins,
you pull the EntityManager instance out of Session and assign it to your manager variable.

This will fail. The follow-on-request is on a different thread than the prior request. The EntityManager you put into Session is
pinned to the thread of the prior request. It will throw the System.InvalidOperationException the moment you use it on the new
request.

The solution is as described above. Set the AuthorizedThreadId property to the new request's thread immediately after
restoring the EntityManager from Session, well before calling any other of its members.

Disabling thread id checking
You can disable thread id checking by setting AuthorizedThreadId to null.

Unless you are an expert at writing multi-threaded code and can design an architecture that avoids livelocks and deadlocks,
we strongly recommend that you leave thread checking enabled. Turning off thread checking is especially dangerous in server
methods which may be called by multiple threads. 

Please only disable thread id checking for a very good reason and with full awareness of the risks.

Customize the thread id check
If you don't want to disable thread id checking altogether but instead implement your own logic, use the SafeThreadingCheck
property on the EntityManager.  Set the SafeThreadingCheck to a method of your choosing to perform custom logic, and be sure
to throw an exception if the threading check fails.

For example:

C#entityManager.SafeThreadingCheck = (em) => {
    var id = em.AuthorizedThreadId;
    Assert.IsTrue(id == AppEnv.Current.GetCurrentThreadId());
};

Entities are not thread safe either
The EntityManager throws an exception when exercised on multiple threads. Unfortunately, there is no similar guard logic for
entities nor for collections of entities. You have to ensure that they are used in a thread-safe manner. 

As mentioned, it is best to avoid multiple threads in the first place. You rarely need background threads in a client application.
Regard claims to the contrary with deep suspicion.

Server programming is another matter. Strive to make custom server logic single-threaded. Avoid stateful static classes. When
multiple threads are unavoidable, make sure you use the necessary synchronization logic.


