
Documentation - EntityServer

Page 1 - Last modified on August 15, 2012 17:20

Contents

• Introduction
• Stateless
• Self-sufficient
• Extensible
• Secure
• Query and Save pipelines

• Query pipeline
• Save pipeline

The DevForce EntityServer is a controller class that mediates between the client application and server-side services. This
topic describes its purpose and principal functions.

Introduction
The EntityServer is a DevForce controller class that operates in the background. There is usually one instance per Application
Server but you can have multiple instances running simultaneously on the server.

The developer never works with the EntityServer directly; it's an internal class that the the developer can't even see. But the
developer knows it is there, responding to client requests and distributing tasks to other components including components the
developer can see and often write.

The EntityServer is primarily responsible for fielding and routing client requests of which there are four basic types:

1. Authentication
2. Query
3. Save
4. Custom service method invocation

Login and logout are the two authentication requests. The EntityServer can authenticate from an ambient security context in
lieu of explicit login. You can run with no security at all - a risky proposition potentially acceptable on a secure internal network.
See the introduction to security below.

Query and save requests are routed to query and save pipelines as described below.

The EntityServer forwards calls to your custom service methods; your methods are responsible for authorizing the caller (the
caller's IPrincipal is one of the parameters) and performing the service.

Stateless
The EntityServer is "stateless", meaning that it handles each client request on its own thread, independent from every other
request, and the EntityServer does not remember anything from one client request to the next.

We can't dictate how you write your server-side customizations. We can't - and shouldn't - stop you from writing a "stateful"
service that the EntityServer executes on your behalf. That is an extremely risky thing to do; cross-thread concurrency bugs are
easy to create and hard to remove. Please be careful.

Self-sufficient
The EntityServer can perform its tasks with very little help from the developer. You have to provide an Entity Model (aka
Domain Model) – the assembly of entity classes that collectively define the data and behavior of entities in the application
domain.

That Entity Model may be the only thing the developer  provides. The developer does not write a “domain service” to tell
DevForce how to perform data-oriented operations. You neither write nor maintain an enormous class file with query, insert,
update, and delete service methods for every entity. You don't write that same old code, over and over, for each entity.

DevForce knows how to query, insert, update, and delete on its own. You can intervene as necessary - where necessary - to
prescribe, influence or block these operations. You do that, as we'll see, by modifying the pertinent EntityServer pipelines rather
than by adding entity-specific operation methods.

Extensible
Most developers will customize the EntityServer behavior by extending it in five principle ways:

1. Declaring security constraints in the entity model, in the configuration, and with custom authentication logic.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/multiple-entityservers
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/back-end-services
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entity-data-model


Documentation - EntityServer

Page 2 - Last modified on August 15, 2012 17:20

2. Injecting custom behaviors in the EntityServer query and save pipelines to add or change processing as when specifying
operation authorizations or pre-processing entities to be saved.

3. Enriching the entity classes with custom business logic such as validation rules that DevForce recognizes and executes on
the server.

4. Adding custom service methods that clients can call to perform arbitrary actions on the server.
5. Replacing DevForce components with alternative implementations.

Again, you don’t have to do any of this. DevForce works out-of-the-box with the entity model you define. However, if client
machines are distributed across a public network, you should add logic to secure your server (#1) at the very least.

Secure
The "Secure" topic details the numerous security gates distributed throughout DevForce. At this level we'll merely inventory the
opportunities available to the developer:

• ASP.NET Authentication is turned on by default. The EntityService picks up the IPrincipal from IIS and presents that
principal to all methods you see and write.

• You can substitute your own authentication scheme and specify your own IPrincipal that is extended with application-
specific roles and claims.

• Every client request (except a login request) must be accompanied by the security token that the EntityServer created and
sent to the client when that client initiated its current authenticated session. 

• Entity class security attributes you specify during model definition can block query and save operations outright. You can
add security-oriented property interceptors and class level logic to ensure the fine-grained integrity of entity data.

• Every query and save passes through a security check in the query and save pipelines. You can closely examine these
requests before letting them through, rejecting or modifying them as appropriate. You can log every request and every
affected entity for audit purposes if you choose, in the manner you see fit.

• You must mark explicitly the service method that clients may invoke and you can easily restrict them to authorized users.
• You can scrub errors returned to the client to ensure that no sensitive information is disclosed in an exception.

Query and Save pipelines
The EntityServer routes queries and saves to their respective pipelines. The outward manifestation of the default pipelines are the
EntityServerQueryInterceptor and the EntityServerSaveInterceptor respectively.

Each pipeline consists of "segments" represented by a virtual method that performs some function on the path from request
to response. You can supplement or even replace a segment by deriving from the DevForce interceptor class and overriding
methods and properties.

Query pipeline

The "Query" topic covers the EntityServerQueryInterceptor in detail. Here is a summary of the four methods you can override.

Method Typical Usage

AuthorizeQuery  Determine if the user is authorized to perform this particular query.

FilterQuery  Modify the query, perhaps adding filters and limiting the size of the
potential results.

ExecuteQuery  Control what happens immediately before and after the query is
executed. Call the base method to perform the query.

AuthorizeQueryResults  Inspect the entities and query data by-products that are about to be
sent to the client. This is your chance to reject a query that escaped
earlier filtering and managed to produce data that should not be sent
to the client.

Outside of the query pipeline you can define a catalog of query filters, organized by entity type. DevForce inspects the
incoming query and applies these filter automatically to constrain the types mentioned in the query.

Save pipeline

The entities-to-be-saved arrive at the front of the save pipeline as entities in the cache of a server-side EntityManager. You are
free to use this EntityManager to query for additional entities. You can add, modify, or remove entities. The changed entities
that are still in cache when ExecuteSave is called will be the entities actually saved.

The "Save" topic covers the default pipeline EntityServerSaveInterceptor class in detail. Here is a brief summary of the
methods you can override.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/back-end-services
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/interceptors-plugins
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/secure
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/authentication-details
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/property-interceptors
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/call-server-methods
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/secure-intercepterror
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerQueryInterceptor.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-server-lifecycle-events
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerQueryInterceptor.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save-lifecycle-server
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor.html


Documentation - EntityServer

Page 3 - Last modified on August 15, 2012 17:20

Method Typical Usage

AuthorizeSave  Determine if the user is authorized to perform this save. The base
implementation walks all of the types involved in the save and calls
the ClientCanSave method to determine if the user is trying to save
any unauthorized types.

ClientCanSave  Determine which entity types this user is authorized to save.

ValidateSave  Add or remove server-side instance validation rules; then let the base
implementation apply the rules to each entity-to-be-saved.

ExecuteSave  Control what happens immediately before and after performing the
database save. Call the base method to perform the save.

OnError  Could log the errors, something the base implementation does not do.


