
Documentation - IEnumerable named query

Page 1 - Last modified on December 05, 2012 16:43

Contents

• What's the difference?
• Performance implications
• When to use IEnumerable

A named query method returns either an IQueryable or an IEnumerable of an entity type. This topic explains the
implications of each choice.

The query that the DevForce EntityServer actually processes is the result of copying LINQ clauses from the original client
query and attaching them to the output of the named query method. The output of the named query can be either an IQueryable
or an IEnumerable of an entity type. The difference is important.

What's the difference?
An IQueryable is an expression tree. The LINQ clauses from the original client query are added to that expression tree,
effectively redefining the query before it is executed

An IEnumerable, on the other hand, is a delegate, an impenetrable function. The LINQ clauses added from the original
client query take effect after the delegate has been executed. Those clauses filter, sort, group, and page the in-memory entities
produced by the delegate.

An IQueryable that is also an EntityQuery<T> can also have "Include" operations performed against it. The "Includes" can
be performed on either the client or the server in this case.  Note, however, that IEnumerables and IQueryables that are not also
instances of an EntityQuery<T> do not support using the "Include" operator. 

Performance implications
The difference can profoundly affect performance on the server and on the database. An example may help clarify. Imagine …

• there are 10,000 customers in the database.
• only 100 of them have names that begin with the letter “B”.
• the client send a query that retrieves only the “B” customers.
• you’ve written a default named query called GetCustomers().

The EntityServer will merge the client and named queries yielding something akin to this:

C#GetCustomers().Where(c => c.StartsWith("B"))

VBGetCustomers().Where(Function(c) c.StartsWith("B"))

Suppose the GetCustomers named query method returns IQueryable

C#public IQueryable<Customer> GetCustomers() {
   return new EntityQuery<Customer>();
}

VBPublic Function GetCustomers() As IQueryable(Of Customer)
  Return New EntityQuery(Of Customer)()
End Function
When the re-composed query executes, it will retrieve 100 Customer entities from the database.

Suppose instead that the GetCustomers named query method returns IEnumerable as in this contrived example:

C#public IEnumerable<Customer> GetCustomers() {
   return new EntityQuery<Customer>().ToList();
}

VBPublic Function GetCustomers() As IEnumerable(Of Customer)
  Return New EntityQuery(Of Customer)().ToList()
End Function

The merged query has not changed. It still has a Where clause that filters for the “B”s. But this time, the server fetches all
10,000 customers from the database thanks to the ToList() method. Only after the 10,000 customers arrive on the server will
the Where clause kick in and filter the results down to the 100 customers the client actually wanted.

The client receives only 100 customers with either GetCustomers implementation. It neither knows nor cares how the server
did its job. But with the IEnumerable version of GetCustomers, the EntityServer

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://msdn.microsoft.com/en-us/library/bb351562.aspx
http://msdn.microsoft.com/en-us/library/9eekhta0.aspx


Documentation - IEnumerable named query

Page 2 - Last modified on December 05, 2012 16:43

When to use IEnumerable
Clearly IEnumerable is a poor choice for Customer queries. It might be a good choice for small, stable entity lists.

Imagine that your business is very popular. Many clients are constantly online, badgering the server repeatedly with requests
for your product catalog. Your catalog has only 100 highly sought after items that don’t change very often … perhaps a
few times per day. You’d like to avoid the pressure of unnecessary trips to the database by caching the product list on the
EntityServer. You can do that with a named Product query.

C#public IEnumerable<Product> GetProducts() {
   return ThreadSafeProductCatalog.GetLatestList(); // periodically self-updates
}

VBPublic Function GetProducts() As IEnumerable(Of Product)
  Return ThreadSafeProductCatalog.GetLatestList() ' periodically self-updates
End Function

Consider this different scenario. You have a specialized named query method that can’t be implemented as an IQueryable. For
some reason you had to implement it with Entity SQL (ESQL); ESQL queries return IEnumerable.

Here is a contrived DevForce ESQL version of GetCustomersStartingWithB

C#public IEnumerable<Customer> GetCustomersStartingWithB() {
      var query = new PassthruEsqlQuery(
        typeof(Customer),
        "SELECT VALUE c FROM Customers AS c WHERE c.NAME LIKE 'B%'");
      var results = query.Execute().Cast<Customer>();
     return results;
}

VBPublic Function GetCustomersStartingWithB() As IEnumerable(Of Customer)
 Dim query = New PassthruEsqlQuery(GetType(Customer), _
           "SELECT VALUE c FROM Customers AS c WHERE c.NAME LIKE 'B%'")
 Dim results = query.Execute().Cast(Of Customer)()
Return results
End Function

See the parameterized named queries topic for an example of a parameterized ESQL named query.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/specialized-named-query
http://msdn.microsoft.com/en-us/library/bb387145.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/passthruesql-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/parameterized-named-query

