
Documentation - Intercept a named query

Page 1 - Last modified on December 05, 2012 16:41

Contents

• Cast the query as an EntityQuery
• Check IsNamedQuery
• Properties of named queries

All queries processed on the EntityServer including named queries pass through the DevForce EntityServerQueryInterceptor
or a custom EntityServerQueryInterceptor if you wrote one. This topic describes how you can distinguish between named and
unnamed queries and intervene as you deem appropriate.

Your custom EntityServerQueryInterceptor can inspect properties of the EntityQuery to determine where it came from and
how it was composed. You can alter the query or even change the query results before they are transmitted to the client.

Everything your interceptor could do to an unnamed client query it can do to the re-composed query derived from a named
query.

Cast the query as an EntityQuery
The EntityServerQueryInterceptor handles every query that implements IEntityQuery. A typical first step is to determine what
kind of query you are intercepting and respond accordingly. A named query is necessarily an EntityQuery so you might start by
casting to EntityQuery as in the following example:

C#public class MyEntityServerQueryInterceptor :
 EntityServerQueryInterceptor
{
 protected override bool FilterQuery() // called before processing the query
 {
 EvaluateEntityQuery();
 return base.FilterQuery();
 }
 private void EvaluateEntityQuery()
 {
 var entityQuery = this.Query as EntityQuery;
 if (null == entityQuery) return; // not an EntityQuery;
 ...
 }
}

VBPublic Class MyEntityServerQueryInterceptor
Inherits EntityServerQueryInterceptor
 Protected Overrides Function FilterQuery() As Boolean
 ' called before processing the query
 EvaluateEntityQuery()
 Return MyBase.FilterQuery()
 End Function
 Private Sub EvaluateEntityQuery()
 Dim entityQuery = TryCast(Me.Query, EntityQuery)
 If Nothing Is entityQuery Then ' not an EntityQuery;
 Return
 End If
 ...
 End Sub
End Class

Check IsNamedQuery
The EntityQuery.IsNamedQuery property returns true if

• the intercepted query was constructed from a named query.
• the property is called on the server inside the EntityServerQueryInterceptor.

Otherwise EntityQuery.IsNamedQuery returns false and the other named-query-related properties discussed here return null or
false.

The EntityServerQueryInterceptor.FilterQuery virtual method is a good place to check for named queries. If you require that
all client queries be routed through named queries, you can throw a custom exception when IsNamedQuery is false.

You could add the following to the EvaluateEntityQuery method from the previous example:

C#if (!entityQuery.IsNamedQuery) throw new NamedQueryException("Not a named query");

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/intercept-named-query
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.IEntityQuery.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityQuery.html

Documentation - Intercept a named query

Page 2 - Last modified on December 05, 2012 16:41

VBIf Not entityQuery.IsNamedQuery Then
 Throw New NamedQueryException("Not a named query")
End If

The EntityServer terminates query processing and transmits the exception to the client.

A more flexible approach is to maintain a whitelist of entity types which do not require named query methods. Throw the
exception if the unnamed query isn't on the list:

C#Type rootQueryType = entityQuery.QueryableType; // the entity type being queried
if (!(entityQuery.IsNamedQuery || UnnamedQueryWhitelist.Contains(rootQueryType))
 throw new NamedQueryException("Not a named query");
}

VBDim rootQueryType As Type = entityQuery.QueryableType ' the entity type being queried
If Not(entityQuery.IsNamedQuery OrElse UnnamedQueryWhitelist.Contains(rootQueryType)) Then
 throw New NamedQueryException("Not a named query")
End If

Properties of named queries
The following properties of the EntityQuery class return meaningful values on the server when the intercepted query is a named
query.

Property Description

OriginalClientQuery The original query from the client exactly as it was received by the
server.

NamedQuery The query output of the named query method. This is the root of the
query that the interceptor is evaluating.

NamedQueryMethod The reflection MethodInfo of the named query method.

NamedQueryResultIsEnumerable Is true if the query method returns an IEnumerable; false if
IQueryable

See the topics dedicated to the EntityServerQueryInterceptor to learn about other ways to intervene in query processing.

http://msdn.microsoft.com/en-us/library/system.reflection.methodinfo%28v=VS.100%29.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-server-lifecycle-events

