
Documentation - Joins

Page 1 - Last modified on August 15, 2012 17:21

Contents

• Life without joins
• You could have joined
• When you have to join

This topic explains how to use the LINQ Join() operator ... and why you should rarely use it.

LINQ has a Join() operator. Developers who are new to Entity Framework (EF) are quick to use it because "JOIN" is such a
common SQL operation. Experienced EF developers prefer to use subqueries and almost never need to use Join().

Why? Primarily because the entity data model (EDM) represents relationships between entities as associations. You build
that model so you can escape the mechanical details and think in object terms rather than database terms. You want to write
anOrder.OrderDetails without getting into the nitty-gritty of using an outer-left-join of Order.OrderID and OrderDetail.OrderID.
You'd prefer not to think about foreign keys at all; they're a concept that is alien to object thinking.

The Join() operation breaks that abstraction. It necessarily forces you to think about precisely how you get the OrderDetails
related to an order. You have to express the Join() in terms of Order.OrderID and OrderDetail.OrderID. Why do that if you
don't have to?

All abstractions "leak" eventually; it's unavoidable in real world programming. But we strive to retain the benefits of our
abstractions while it is easy and prudent to do so.

Life without joins
Suppose we want to query for just those Customers that have placed an Order with our company. In SQL you'd write a "JOIN".
In EF LINQ you'd write a subquery instead and test to see if there were any orders. That query written in comprehension syntax
could look like this:

 query = from c in manager.Customers
 where c.Orders.Any()
 select c
results = query.ToList()

The manager variable in these examples is an instance of the NorthwindIBEntityManager generated from a model that
accesses the "NorthwindIB" tutorial database. If you prefer method chaining (lambda) syntax you could write it this way:

C#query = manager.Customers.Where(c => c.Orders.Any())
results = query.ToList();

VBquery = manager.Customers.Where(Function (c) c.Orders.Any())
results = query.ToList()

We're taking advantage of the fact that we've modeled the association between Customer and Order. We never need to JOIN
when we have an association.

You could have joined
You could have achieved the same effect with a LINQ Join(). First with comprehension syntax.

 query = from c in manager.Customers
 join o in manager.Orders
 on c.CustomerID equals o.CustomerID
 select c
results = query.Distinct().ToList()

That's a lot of messy detail. We're fortunate that Customer has a single value key; it gets very messy if Customer has a
composite key. Don't forget the Distinct() method or you'll get 800+ Customers, one for every Order in the tutorial database,
when you only want the ~80 distinct Customers.

Here it is again in method chaining (lambda) syntax:

C#query = manager
 .Customers // Customers
 .Join(manager.Orders, // Orders
 c => c.CustomerID, // Customers key
 o => o.CustomerID, // Order key
 (c, o) => c); // projected value (the "select")
results = query.Distinct().ToList();

VBquery = manager

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/LINQ
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entity-framework

Documentation - Joins

Page 2 - Last modified on August 15, 2012 17:21

 .Customers ' Customers
 .Join(manager.Orders, ' Orders
 Function(c) c.CustomerID, ' Customers key
 Function(o) o.CustomerID, ' Order key
 Function(c, o) c) ' projected value (the "select")
results = query.Distinct().ToList()

When you have to join
Occasionally you know that two entities are related even though there is no association in the model.

Imagine that the Employee entity has a deprecated key (EmployeeNumber) which remains the only basis for
linking to historical data (OldEmployeeData). Entity Framework won't let you associate a dependent entity's key
(OldEmployeeData.EmployeeNumber) with a non-primary key of the parent (Employee.EmployeeNumber). You'll have to join
them.

We don't have data like that in the DevForce "NorthwindIB" tutorial database so we'll make up an absurd example in which
you query for the Employees whose IDs happen also to be Product IDs. You can join these entities yourself; Employee and
Product have integer IDs with values that overlap.

The values that you join must be comparable with equality. A common mistake is to join on two properties that have different
data types. You'll learn of your error in a runtime exception.

Here's the query in comprehension syntax:

 query = from e in manager.Employees
 join p in manager.Products
 on e.EmployeeID equals p.ProductID
 select e
results = query.ToList()

The results include all nine Employees in the "NorthwindIB" tutorial database; they happen to have ids in the range {1..9} …
as do the first nine Products.

Distinct() wasn't necessary because the query compares primary key values which are necessarily unique. Here's the same
query in method chaining (lambda) syntax:

C#query = manager
 .Employees
 .Join(
 manager.Products,
 e => e.EmployeeID,
 p => p.ProductID,
 (e, p) => e);
results = query.ToList();

VBquery = manager
 .Employees
 .Join(
 manager.Products,
 Function(e) e.EmployeeID,
 Function(p) p.ProductID,
 Function(e, p) e)
results = query.ToList()

