Documentation - Add custom base class

Contents

* A wrong way
¢ Name it in Injected Base Type

¢ Base type code-generation

¢ Add code to EntityBase

¢ Base class in a different assembly

» Base class for specific entity classes

Generated entity classes ultimately inherit from Entity but you can inject your own custom entity base class at the root of
your entity model's inheritance hierarchy in order to provide common state and behaviors across the model. This topic explains
how.

In many applications there is logic that every entity should share. It's natural to put this logic in a base class and have all of
your entity classes inherit from it.

A wrong way

You happen to know that when an entity class inherits from another class, you specify the base class in the EDM Designer Base
Type property. You consider creating an empty, abstract EntityBase type in the conceptual model and setting every entity's Base
Type property to "EntityBase".

That won't work for several reasons chief among them: Entity Framework insists that all entity types be mapped to a store
object. There is no store object for EntityBase and you can't create one either.

Name it in Injected Base Type

The DevForce EDM Designer Extension added many code generation control properties including a model-level Injected Base
Type property. You set the Injected Base Type to "EntityBase" in the EDM Designer Properties Window as shown:

Model Browser LSl Properties
Type here to search = AdvancedNorthwindMedel ConceptualEntityModel -
4 g AdvancedMorthwind.edmx : ‘H, | J

4 |_§ﬂ AdvancedNorthwindMaodel

[Entity Types 4
[Complex Types DataSource Key AdvancedNorthwindEntities
I Associations DevForce Enabled True

@ EntityContainer: Advanced EntityManager Mame AdvancedNorthwindManager
4 | | AdvancedMorthwindModel Std

| Tables / Views
| Stored Procedures

Generate Binding Attnbute: True
Generate Developer Classes False

B Constraints Handle Mapping Mismatck Fix
EntityBase I
Max, Classes Per File 100
OData Enabled False
Tag

Validation Attribute Mode DevForceVerification

Injected Base Type
The base type for all generated entities,

* | ”' |

Base type code-generation
The DevForce code generator substitutes EntityBase wherever it would have specified the DevForce Entity class.

Ipublic partial class Customer : EntityBase {...}

Partial Public Class Customer Inherits EntityBase ...
End Class

Page 1 - Last modified on August 15, 2012 17:21

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.Entity.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/EF
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/edm-designer-extension
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-edm-designer-properties
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-generate

Documentation - Add custom base class

It also adds to the entity source code file an empty EntityBase partial abstract class that inherits from Entity:
using IbEm = IdeaBlade.EntityModel;

[DataContract(IsReference=true)]
[IbEm.DiscoverableType(IbEm.DiscoverableTypeMode.KnownType)]
public abstract partial class EntityBase : IbDEm.Entity {

}

Imports IbEm = IdeaBlade.EntityModel

<DataContract(IsReference=True)>
<IbEm.DiscoverableType(IbEm.DiscoverableTypeMode.KnownType)>
Partial Public MustInherit Class EntityBase Inherits IbEm.Entity
EndClass

Add code to EntityBase

Now add the logic that you want all entities to share ... but not to the generated EntityBase class! Your changes would be lost
the next time you re-generated the entity class file ... which happens often.

Instead, follow the same pattern for extending generated entity classes: add a partial class file called EntityBase.cs (or
EntityBase.vb).

Remember to link to it in your Silverlight model project.

Here's an example with a dummy property:

public partial class EntityBase
{
/Il <summary>
/Il <see cref="EntityBase"/> demo property that gets the name of the concrete type.
/Il </[summary>
protected internal string EntityTypeName { get { return This.GetType().Name; } }

}

Partial Public Class EntityBase
" <summary>
" <see cref="EntityBase"/> demo property that gets the name of the concrete type.
" </summary>
Protected Friend ReadOnly Property EntityTypeName As String
Get
Return Me.GetType().Name
End Get
End Property
End Class

Base class in a different assembly

You can define the EntityBase class in a different assembly if you want to share it with multiple models in multiple projects.
You might even use EntityBase in different DevForce applications.

DevForce has a naming convention for that purpose. If the name supplied to the Injected Base Type EDM Designer extension
property contains a period (.), DevForce assumes that the named class already exists elsewhere and uses the name exactly as

you specified it.

Suppose you defined EntityBase in a class library called Common. Presumably its namespace is also called Common. Set the
Injected Base Type to "Common.EntityBase". Add a reference to the Common library to your model project. DevForce will
generate entities that inherit from Common. EntityBase.

Imitate the generated EntityBase if you decide to write your own in a different project. Remember to inherit from Entity and
include the two class-level attributes shown above.

Base class for specific entity classes
Perhaps you want a few of your entity classes to inherit from a special base class dedicated just to them.

For example, suppose that Customer and Employee have functionality in common as "actors" in the domain.

Page 2 - Last modified on August 15, 2012 17:21

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-partial-class-file
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-link-source-file

Documentation - Add custom base class

These classes have no properties in common and they do not inherit from another entity model class (i.e., they are not
involved in any form of Entity Framework inheritance). For reasons known only to you they have some business logic in
common. That logic is irrelevant or incorrect for all other model entities so you refuse to put that logic in the model-wide

EntityBase class.

You've already defined an abstract Actor class to hold this logic (see below). Now you want to make Customer and Employee
inherit from Actor.

You'll have to modify the DevForce code generation template to do it. You can't specify a custom base class for individual
entity types in the designer.

You will be tempted by the EDM Base Type property. It won't work. That property is constrained to other types in the entity
model.

Fortunately, it's not difficult.

» Follow the steps for customizing the DevForce T4 template
* Override the DomainModelTemplate. GetEntityClassDef method as shown below

* Set the EDM Tag property of both Customer and Employee to "Actor"; your custom template will know to use the Actor
class when it sees this 7ag.

Properties
= AdvancedNorthwindModel.Customer EntityType

Type here to search

4 4 AdvancedMorthwindMaodel.edmx E':ﬁ@ 4] | =
- @ AdvancedMNorthwind Model .

4 Entity Types :
; %Eustomer <

" %2 Employee Can Query Default

O@ Cirder Can Save Default

%2 OrderDetail | Ta
g Actor |
“a m'ﬂ..ﬁﬂ“‘m*-m gl . e s s e Atk .

Here is the suggested method override:

protected override ClassDef GetEntityClassDef
(EntityOrComplexTypeWrapper entityOrComplexType) {
String baseName;
var entityType = entityOrComplexType as EntityTypeWrapper;
bool isAbstract;
if (entity Type != null) {
baseName = GetMyEntityBaseTypeName(entity Type); // <-- substitute
/IbaseName = GetEntityBaseTypeName(entity Type); // <-- original
isAbstract = entityType.IsAbstract;
} else {
baseName = "IbEm.ComplexObject";
isAbstract = false;

}

var classDef = new ClassDef(FmtName(entityOrComplexType.Name),
FmtName(baseName),
entityOrComplexType. Accessibility)
.SetAbstract(isAbstract)
SetPartial(true);
return classDef;

}
protected static string GetMyEntityBaseTypeName(Entity TypeWrapper entityType) {

if (entity Type.Tag.Contains("Actor")) return "Actor"; // ToDo: replace magic string
return GetEntityBaseTypeName(entityType);
}
Protected Overrides Function GetEntityClassDef(ByVal entityOrComplexType As _
EntityOrComplexTypeWrapper) As ClassDef
Dim baseName As String
Dim entity Type = TryCast(entityOrComplexType, EntityType Wrapper)
Dim isAbstract As Boolean
If entity Type IsNot Nothing Then
baseName = GetMyEntityBaseTypeName(entityType) ' <-- substitute
'baseName = GetEntityBaseTypeName(entityType); // <-- original
isAbstract = entity Type.IsAbstract

Page 3 - Last modified on August 15, 2012 17:21

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/custom-code-generation-template

Documentation - Add custom base class

Else
baseName = "IbEm.ComplexObject"
isAbstract = False
End If
Dim classDef = New ClassDef(FmtName(entityOrComplexType.Name), FmtName(baseName), _
entityOrComplexType. Accessibility). SetAbstract(isAbstract).SetPartial(True)
Return classDef
End Function
Protected Shared Function GetMyEntityBaseTypeName(ByVal _
entityType As EntityTypeWrapper) As String
If entity Type.Tag.Contains("Actor") Then ' ToDo: replace magic string
Return "Actor"
End If
Return GetEntityBaseTypeName(entityType)
End Function

Notice that the GetMyEntityBaseTypeName method checks for the word "Actor" in the Tag property that DevForce added
to the EDM Designer properties. If the Tag contains "Actor” (as it will for Customer), the method returns the "Actor" base
name ... and Customer inherits from Actor. If it doesn't (as Order does not), the method returns the injected base type name -
"EntityBase" in this case - and Order inherits directly from EntityBase.

The Tag property is a great way to tell your custom code generation method what to do on a case-by-case basis. It's easy to
set from within the EDM Designer.

Important: The Actor class must inherit from the DevForce Entity class. It probably will inherit from your EntityBase which
inherits from Entity.

[DataContract(IsReference = true)]
[IbEm.DiscoverableType(IbEm.DiscoverableTypeMode.KnownType)]
public abstract class Actor : EntityBase { ... }

<DataContract(IsReference = True)>
<IbEm.DiscoverableType(IbEm.DiscoverableTypeMode.KnownType)>
Public MustInherit Class Actor Inherits EntityBase

End Class

Do not insert another entity model class between Actor and Entity. The Entity Framework demands an unbroken chain of
entity inheritance within the model. Customer->Actor->EntityBase->Entity is OK because, once you get to Actor, there are no
more entity model ancestor classes. Customer->Actor->SomeModel Entity->EntityBase->Entity is not OK.

Page 4 - Last modified on August 15, 2012 17:21

