
Documentation - EDM Designer properties

Page 1 - Last modified on August 15, 2012 17:21

Contents

• EDM Property Sets
• Model EDM Properties

• EntityManager subclass
• Injected base type
• Max. classes per file

• Entity EDM Properties
• Query and save authorization example

• EDM Properties for Properties
• Attribute suppression
• Concurrency strategy
• Entity property accessibility

The EDM Designer presents a different properties window for each kind of object in the model. This topic describes many
of the properties of each conceptual model object types and how to set them.

The EDM Designer Property window lists EDM control properties for EDM objects such as entities, associations, complex
types, store objects, and the model itself. Each kind of object has its own list of properties, appropriate to its type.

The most important - and the only properties you can change - are the Conceptual Model properties. The DevForce EDM
Extension supplements this set with its own properties to guide DevForce generation of entity class code. 

This topic concentrates almost exclusively on the DevForce designer extension properties. You can learn about the base
designer properties from other sources.

EDM Property Sets
Five property sets correspond to the five kinds of Conceptual Model objects:

1. The Model itself
2. Entity
3. Property
4. Association
5. Complex Type

We only consider the first. The Complex Type has a Tag property but is otherwise uninteresting. The Association is a worthy
topic of its own but has no DevForce-specific EDM properties.

Pin the Properties Window open throughout this exercise and sort by category.

Open the Model Browser; it's easier to review a model in the Model Browser than on the design canvas.

Model EDM Properties
Select the Model-level node which is "Northwind" in this screenshot. 

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-edm-designer
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/edm-designer-extension
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/edm-designer-extension
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-generate
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/related-technology#HEntityFramework
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-edm-designer-modelbrowser
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-edm-designer-canvas


Documentation - EDM Designer properties

Page 2 - Last modified on August 15, 2012 17:21

Property Description

DataSource Key  An arbitrary string name that ties this EDM to a single data source.
At runtime, DevForce uses this name to find the appropriate database
and its connection string. The code generator adorns each entity class
with an DataSourceKey attribute that specifies this name, thus binding
the entity class to the model's datasource.

DevForce Enabled  Whether DevForce should generate code for this model.

EntityManager Name  Name of the model-specific, EntityManager subclass that is generated
for this model; see below.

Generate Binding Attributes  Whether to generate the binding attributes - BindableAttribute,
DisplayAttribute, EditableAttribute, and ReadOnlyAttribute - for each
entity property.  These attributes can be suppressed at the property
level.

Generate Developer Classes  Whether to generate for each entity an empty partial class file for
developer customizations. False by default. Such files are easy to
create manually when needed.

Injected Base Type   Name of the custom base class to inject at the root of the entity
model hierarchy; see below.

Max. Classes per File  An integer specifying the maximum number of entity classes to
generate in a single class file; see below.

Odata enabled  Whether model-specific EntityManager can be used as an OData
DataService. When enabled, DevForce adds attributes and code to the
EntityManager to support OData and adds OData library references to
the project.

Tag  An arbitrary string of your choosing. Use it to guide your custom
code generation.

Validation Attribute Mode  Whether to use DevForce Verification attributes or the .NET
attributes from System.ComponentModel.DataAnnotations when
adding validation attributes to entity properties. See the "Validation"
topic to assess the merits of each choice.

EntityManager subclass

DevForce generates a custom EntityManager with model-specific members that derives from the EntityManager. The signature
for such an EntityManager looks like this:

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/odata
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/custom-code-generation-template
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/custom-code-generation-template
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validate
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager.html


Documentation - EDM Designer properties

Page 3 - Last modified on August 15, 2012 17:21

C#[IbEm.DataSourceKeyName(@"NorthwindIBEntities")]
public partial class NorthwindIBEntities : IbEm.EntityManager { ... }

VB<IbEm.DataSourceKeyName("NorthwindIBEntities")>
Partial Public Class NorthwindIBEntities Inherits IbEm.EntityManager
End Class

The "EntityManager name" matters, especially in a project with multiple EDMX files. If a single project has multiple EDMX
files and all of the models share the same “EntityManager Name”, then the code generator emits a series of partial class files
that compile together to form a single custom EntityManager class that spans those models. 

If the models each have their own "EntityManager Name", each model gets its own EntityManager subclass.

Injected base type

DevForce entity class must ultimately inherit from Entity. If the "Injected Base Type" is blank, the entity classes generated from
this model will either inherit directly from Entity or from another class in the model.

You can insert your own base class between Entity and the other generated entity classes by naming that class in the "Injected
Base Type". There are rules about this class:

• Your base class must inherit from Entity or from another class that inherits from Entity.
• If the "Injected Base Type" name is a "qualified name" - meaning it contains a period ('.') - then that class is assumed to

exist, derives from Entity, and is in a referenced assembly of the model project.
• If the "Injected Base Type" is not "qualified" - its name does not contain a period - DevForce generates a partial class file

for the base class; the generated class inherits from Entity but is otherwise empty.
• In either case, DevForce generates model entity classes that derive from your base class instead of Entity.

The reasoning is as follows. Your base class may reside in another project where it can be shared with other models in other
projects or even other applications. Such a class would have its own namespace, hence the period in the class name.

On the other hand, you may prefer to define the base class in this project for this model. Generating the base class as a
 partial class is harmless, guarantees that all model entity classes really do derive from Entity, and ensures that the project will
compile ... even if you neglect to fill in the base class details in your companion partial class file.

Max. classes per file

Models with a large number of entities can sometimes result in generated code files that are too large to be processed by the
Visual Studio editor. This problem may be avoided by generating code into more than one file. The “Max classes per file”
setting will limit the number of classes that are generated into a single file and will create as many files as are necessary to meet
the specified constraint for each file. The default value for this property is 100 but can be adjusted in either direction. If it is set
to 1, then each generated file will contain only a single class.

As of 6.1.4, when Max. Classes Per File is set to 1, the generated designer class filename will default to “className.cs” eg:
NorthwindIBEntities.cs, EntityRelations.cs, Customer.cs, etc. When both Max. Classes Per File is set to 1 and Generate
Developer Classes is set to True, the generated designer class filename will default to “className.IB.Designer.cs” eg:
NorthwindIBEntities.IB.Designer.cs, EntityRelations.IB.Designer.cs, Customer.IB.Designer.cs. The developer classes name will
stay as Customer.cs, Order.cs, etc. Developers have the ability to override the filename suffix by overriding the following virtual
property:

C#protected virtual String GeneratedFileNameSuffix {
     get { return "IB.Designer"; }
}

Having many generated files is often a bad idea because of issues involved with synchronizing many changed files within a
source control system. We recommend leaving this default as is unless you have a specific issue that requires changing it.

Entity EDM Properties
Select an Entity node such as Customer as shown in this screenshot.

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.Entity.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-custom-base-class


Documentation - EDM Designer properties

Page 4 - Last modified on August 15, 2012 17:21

Property Description

Can Query  Whether the client is allowed to send a query to the server that
returns or involves this type. The choices are True, False, and
Default. If True or False, the code generator adds the corresponding
ClientCanQueryAttribute  to the entity class. Default is equivalent to
True and suppresses the attribute altogether. A custom server-side
EntityServerQueryInterceptor is the ultimate arbiter of the client's right
to query the type. 

CanSave  Whether the client is allowed to save entities of this type. The choices
are True, False, and Default. If True or False, the code generator adds
the corresponding ClientCanSaveAttribute  to the entity class. Default
is equivalent to True and suppresses the attribute altogether. A custom
server-side EntityServerSaveInterceptor is the ultimate arbiter of the
client's right to save instances of this type.  

Tag  An arbitrary string of your choosing. Use it to guide your custom
code generation.

Query and save authorization example

In the following example, the developer specified that the client can query but not save Customers. The developer left both
authorization properties as Default for the Employee entity.

C#using IbEm   = IdeaBlade.EntityModel;
  ...
[IbEm.ClientCanQuery(true)]
[IbEm.ClientCanSave(false)]
public partial class Customer : IbEm.Entity { ... }
public partial class Employee: IbEm.Entity { ... }

VBImports IbEm = IdeaBlade.EntityModel
  ...
<IbEm.ClientCanQuery(True)>
<IbEm.ClientCanSave(False)>
Partial Public Class Customer Inherits IbEm.Entity
End Class
Partial Public Class Employee Inherits IbEm.Entity
End Class

EDM Properties for Properties
Entity and ComplexType properties are each defined by a set of EDM properties. The EDM properties for the
Customer.CompanyName property are below:

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerQueryInterceptor~ClientCanQuery.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/authorize#HQueryauthorization
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~ClientCanSave.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/authorize#HSaveauthorization
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/custom-code-generation-template
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/custom-code-generation-template
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/ComplexType


Documentation - EDM Designer properties

Page 5 - Last modified on August 15, 2012 17:21

Property Description

Getter  The access mode for the property getter; see note on property
accessibility

Setter  The access mode for the property setter; see note on property
accessibility

Attribute suppression  A collection of settings that determine which of many possible
attributes can be generated for this property; see "Attribute
suppression" below.

Bindable Mode  A hint to the UI about whether the property can be bound
OneWay, TwoWay, or None=not at all. It's the parameter to
the DisplayAttribute which is generated for the property unless
suppressed.

Concurrency Strategy  Whether this property participates in optimistic concurrency conflict
detection and if so how; see below

Display Name  A hint to the UI about what name to use when constructing a
label or grid column header for this property. It's the parameter to
the BindableAttribute which is generated for the property unless
suppressed.

Tag  An arbitrary string of your choosing. Use it to guide your custom
code generation.

Attribute suppression

By default, the code generator adorns entity entity or complex type property with the attributes that are appropriate for that
property. The "appropriate" attribute depends upon characteristics of the property such as whether a setter exists, if the property
is nullable or not, if it is a string of known length (see the "Facets" category of EDM properties), etc.

Model-level settings can suppress some of the attributes for all properties in the model. You also can suppress attribute
generation for each entity and complex type property individually by opening the  Attributes to Suppress collection and
setting any of them to True. 

The attributes you can suppress are:

Attribute Description

Bindable  Suggests to the UI how the property should be bound: OneWay,
TwoWay, or None=not at all.

DefaultValue  Specifies the default value to use during new entity initialization.

DisplayName  Suggests the text that the UI should use to write labels and grid
column headers.

Editable  Suggests to the UI whether it should enable editing of this property.

Key  Whether this property participates in the EntityKey.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save-concurrency
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/custom-code-generation-template
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/custom-code-generation-template
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-default-value
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/EntityKey


Documentation - EDM Designer properties

Page 6 - Last modified on August 15, 2012 17:21

Metadata  Whether to look at the entity's companion metadata class for the
attributes to adorn the property.

ReadOnly  Whether the property is read-only or read/write.

Validation  Whether to generate validation attributes.
Remember: these setting enable or suppress attribute generation. They do not set the values of the attributes. For example,
setting Editable false suppresses the EditableAttribute; it does not disable editability.

Finally, for ultimate control over attribute generation, you can write an entity metadata class and set every attribute manually.

Concurrency strategy

The "Concurrency strategy"  choices are described in a topic dedicated to concurrency. The choice you make here appears in
the generated property code as one of the parameters to the property's DataEntityProperty constructor, as seen in this example:

C#using IbEm   = IdeaBlade.EntityModel;
  ...
// RowVersion's DataEntityProperty
public static readonly IbEm.DataEntityProperty<Customer, Nullable<int>> RowVersion
  = new IbEm.DataEntityProperty<Customer, Nullable<int>>
     ("RowVersion", ..., ..., IbEm.ConcurrencyStrategy.AutoIncrement, ...);

VBImports IbEm = IdeaBlade.EntityModel
  ...
' RowVersion's DataEntityProperty
Public Shared ReadOnly RowVersion As New  _
  IbEm.DataEntityProperty(Of Customer, Nullable(Of Integer))
    ("RowVersion", ... , ..., IbEm.ConcurrencyStrategy.AutoIncrement, ...)

Entity property accessibility

The property getters and setters are public by default. You can choose the access mode - Public, Internal, Protected, or Private -
to control the visibility of the property outside the class.

All four choices are available ... except in Silverlight. Silverlight prohibits non-public reflection; that prohibition prevents
DevForce from getting and setting entity data while communicating with the server during queries and saves. 

You can choose Internal, thus limiting access to classed defined within the model project and to assemblies that are friends of
the model project. You must also make the project's internals visible to .NET assemblies.

See the "Change member visibility" topic for details.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-metadata-class
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validate
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-metadata-class
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save-concurrency
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.DataEntityProperty.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-member-visibility

