
Documentation - Add a named query

Page 1 - Last modified on December 05, 2012 16:46

Contents

• The default named query
• Default named queries are optional
• Specialized named queries
• Write a class for the named query methods
• Named query security
• Learn more

Write a named query method on the server when you want explicit control over how the server interprets a LINQ query
received from the client.

Named queries make it easy to dictate the server-side implementation of a query. You can write several named queries for a
particular entity type which means you can offer clients a menu of query alternatives that each express a distinctive intent.

A named query is a convenient way to consolidate in a single method the logic to:

• authorize the query
• modify the query, perhaps by adding filters or limiting the amount of data returned
• add Include clauses that package related entities in the query result

Named queries are methods that return an IQueryable or an IEnumerable of an entity type. The type can be any serializable
class produced by almost any means imaginable. Most named queries will involve Entity Framework entity types produced by an
Entity Framework query.

There are two basic kinds of named query: the default named query and specialized named queries.

The default named query
The default named query is a named query that represents all entities of a particular type in the database. The signature of the
default named query for the Customer entity type might be as follows:

C#public IQueryable<Customer> GetCustomers();

VBpublic IQueryable(Of Customer) GetCustomers()

Various GetCustomers implementations are considered in the "default named query" topic. For the moment it's worth noting
that

• the method returns an IQueryable (or IEnumerable) of a specific type
• there are no parameters
• the method name consists of a "Get" prefix followed by an EntitySet name, usually the plural form of the entity type

name; you'll learn how to name a query method elsewhere.

When the EntityServer receives a Customer client query that corresponds to this named query, it builds a new query by
copying the client query LINQ clauses and adding them to the output of the named query method. 

All named queries are composable in this way. For example, DevForce translates a client query for Customers beginning with
the letter 'B' such as this one:

C#myEntityManager.Customers.Where(c => c.StartsWith("B");

VBmyEntityManager.Customers.Where(Function(c) c.StartsWith("B")

into something like:

C#GetCustomers().Where(c => c.StartsWith("B");

VBGetCustomers().Where(Function(c) c.StartsWith("B")

The EntityServer

Default named queries are optional
You do not have to write a default named query method.  When the DevForce EntityServer receives a client query and there is
no default named query method on the server, DevForce processes it directly using its own default get-all-entities query as the
root.

If you decide to write a default named query, you can write only one per entity type.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/include-related-entities
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/inenumerable-named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/default-named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/default-named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-method-naming-convention
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver


Documentation - Add a named query

Page 2 - Last modified on December 05, 2012 16:46

Specialized named queries
The developer may wish to write one or more specialized named query methods for a particular entity type. Each method is
associated with a particular business purpose and, accordingly, returns a different set of entities. For example, you might have
one specialized named query for “Gold Customers” and another specialized named query returning “the current user’s Western
Region Customers”.

Specialized named query methods can take parameters, unlike the default named query which must be parameterless.

The EntityServer must be able to find the specialized named query method if the client query asks for it. 

Write a class for the named query methods
Named queries are instance methods of a class. DevForce can find them if the class resides in a discoverable assembly.

There isn’t much special about that class and you can have as many such classes as you like. There are only a few
requirements.

1. it must be public
2. it must have a default constructor (or no constructor)
3. it must be adorned with the EnableClientAccess  attribute.
4. it must reside in an assembly that the DevForce EntityServer will discover.

Please keep your named query provider classes stateless if possible. If it must have state, give great care to ensuring safe
concurrent access to that state.

Please avoid putting anything in this class other than what is strictly necessary to achieve its purpose. The named query
provider class is a poor choice for a grab-bag of server-side features.

Here is an example of a provider class.

C# 
[EnableClientAccess]
public class NamedQueryServiceProvider {
 public IQueryable<Customer> GetCustomers() {...}
  }

VB<EnableClientAccess>
Public Class NamedQueryServiceProvider
 Public Function GetCustomers() As IQueryable(Of Customer)
  ...}
 End Function

You must put this NamedQueryServiceProvider class in an assembly deployed on the server. The domain model project would
do; the domain model assembly is always discoverable and deployed to the server. If you do not want the named query methods
exposed on the client, add it to a separate, full .NET class library project that you only deploy to the server.

Assembly discovery is discussed here.

Named query security
We trust you are authenticating clients before you accept their queries. Even so, you may be uncomfortable simply executing
every query a client sends you, even if the client has been authenticated. You may prefer to inspect, modify, and possibly reject a
query.

The easiest approach is to add query security attributes to the method definitions. The DevForce
EntityServerQueryInterceptor  is affords the most complete and custom control over the query and its interpretation. You can
inherit from our base version of that class and override one or more of its virtual methods. The DevForce EntityServer calls
these methods as it processes the query. Your overrides can terminate the query, replace or modify the query, or even alter the
query results.

Such an interceptor remains the most powerful query management mechanism in DevForce. All queries – named and
unnamed – pass through the interceptor. Anything you can do in a named query you can do in the interceptor. Many developers
will combine named queries and query interception for a balance of convenience and power.

Learn more
Other subordinate topic pages explain in greater detail how to write named queries and use them appropriately.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/specialized-named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/parameterized-named-query
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.DomainServices.EnableClientAccessAttribute.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/discovery
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-security-attribute
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerQueryInterceptor.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/intercept-named-query

