
Documentation - Named vs. unnamed interceptor actions

Page 1 - Last modified on October 27, 2011 13:02

The property interception code snippets in previous topics were all examples of what are termed Named interceptor actions,
in that they each specified a single specific named property to be intercepted. It is also possible to create Unnamed interceptor
actions that apply to all of the properties for a specific target type. For example, suppose that the following code were
implemented in the Employee partial class:

C#[BeforeSet]
public void BeforeSetAny(IbCore.IPropertyInterceptorArgs args) {
 if (!Thread.CurrentPrincipal.IsInRole("Administrator")) {
 throw new InvalidOperationException("Only admistrators can change Product data!");
 }
}

VB<BeforeSet> _
Public Sub BeforeSetAny(ByVal args As IPropertyInterceptorArgs)
 If Not Thread.CurrentPrincipal.IsInRole("Administrator") Then
 Throw New InvalidOperationException(_
 "Only admistrators can change data")
 End If
End Sub

The result of this code would be that only those users logged in as administrators would be allowed to call any property
setters within the Employee class.

A similar ‘after set’ action might look like the following:

C#[AfterSet]
public void AfterSetAny(IbCore.IPropertyInterceptorArgs args) {
 LogChangeToCustomer(args.Instance);
}

VB<AfterSet> _
Public Sub AfterSetAny(ByVal args As IPropertyInterceptorArgs)
 LogChangeToEmployee(args.Instance)
End Sub

This would log any changes to the employee class.

Later in this document we will also describe how to define interceptors that apply across multiple types as well as multiple
properties within a single type.

