
Documentation - Enabling OData

Page 1 - Last modified on October 01, 2014 09:44

Contents

• Getting started
• Connecting to the data
• Enabling OData
• Calling your service
• Advanced topics

• Service operations
• Stored procedures
• Securing the service

Enabling OData for a DevForce model allows for non-.NET clients to access the same back-end as your DevForce .NET
clients. The programming model will be different from DevForce and depends on the OData client implementation on the
chosen platform, but it avoids the need for developing yet another back-end or at a minimum some sort of a translation layer in
front of the DevForce back-end.

In this topic, we will demonstrate how to expose a DevForce domain model through OData and access it from a client.

Getting started
Let’s begin by creating a new project. We’ll be using Visual Studio 2012 and creating a new ASP.NET Empty Web Application.

After creating the project, add the DevForce 2012 Server NuGet package to install the required DevForce dependencies for a
DevForce EntityServer. The EntityServer is the middle tier of a typical n-tier DevForce application. At the end of this tutorial it
will be able to serve DevForce clients as well as OData clients.

Connecting to the data
In this tutorial we are going to use our usual suspect, the NorthwindIB database. At this stage we are assuming basic familiarity
with how to create a data model in DevForce. If you're new to DevForce you may first want to walk through an introductory
sample, such as the Tour of DevForce Silverlight or the Tour of DevForce WPF.

We will name the model NorthwindIB, generate it from the database and select only the Customer and Order tables to keep it
small and manageable.

If everything went well, the result should look like this:

http://www.odata.org
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/tour-devforce-silverlight
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/tour-devforce-wpf

Documentation - Enabling OData

Page 2 - Last modified on October 01, 2014 09:44

This is the data model we'll now expose as a WCF Data Service.

Enabling OData
For all intents and purposes, at this point we have a functioning DevForce back-end and could start building a DevForce client
application. Instead, we are going to expose this back-end via OData with a three step process.

1. For the first step, we need to enable OData in our domain model.

Open NorthwindIB.edmx and click anywhere in the whitespace to select the model, then hit F4 to bring up the model
properties. Under the DevForce Code Generation category you will find a new option called OData Enabled. By default the
option is set to False. Go ahead and change it to True, then save.

http://msdn.microsoft.com/en-us/library/cc668794.aspx

Documentation - Enabling OData

Page 3 - Last modified on October 01, 2014 09:44

Let’s look at what this option did for us. First, it added a couple of attributes to our Entity classes to make them usable in a WCF
Data Service. Second, it generated a partial class for our strongly typed EntityManager.

Open NorthwindIBEntities_IUpdatable.cs. In this file, you’ll find an implementation of System.Data.Services.IUpdatable. The
WCF Data Service calls upon this implementation to handle the CUD operations. This file is generated only once, so you can
make customizations without having to worry about them being overwritten.

Now, what’s this WCF Data Service? The WCF Data Service is part of the .NET framework and handles all the OData
mechanics. In order for the WCF Data Service to do its magic, it requires a compatible data container, which provides the actual
data and supports optional updates. Enabling OData in our data model turned the EntityManager into just such a container. The
implementation of System.Data.Services.IUpdatable handles the optional updates.

2. For the second step we need to add a WCF Data Service to our project.

Right-click on the ODataTour project and select Add | New Item.... In the Add New Item dialog, you will find the WCF
Data Service under Web. We'll name ours ODataService and click Add.

If you're running Visual Studio 2013 the template name will likely be "WCF Data Service 5.6".

If you receive the following message, open the web.config file and change aspNetCompatibilityEnabled to true.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager

Documentation - Enabling OData

Page 4 - Last modified on October 01, 2014 09:44

3. Finally, we need to define the WCF Data Service.

Open ODataService.svc.cs and modify the code as follows:

C#public class ODataService : DataService<NorthwindIBEntities>
{
 // This method is called only once to initialize service-wide policies.
 public static void InitializeService(DataServiceConfiguration config)
 {
 // TODO: set rules to indicate which entity sets and service operations are visible, updatable, etc.
 // Examples:
 // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead);
 // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All);
 config.SetEntitySetAccessRule("Customers", EntitySetRights.All);
 config.SetEntitySetAccessRule("Orders", EntitySetRights.All);
 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; // Or later!
 }
}

VBPublic Class ODataService
 Inherits DataService(Of NorthwindIBEntities)
 ' This method is called only once to initialize service-wide policies.
 Public Shared Sub InitializeService(ByVal config As _
 DataServiceConfiguration)
 ' TODO: set rules to indicate which entity sets and
 ' service operations are visible, updatable, etc.
 ' Examples:
 ' config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead);
 ' config.SetServiceOperationAccessRule("MyServiceOperation",
 ' ServiceOperationRights.All);
 config.SetEntitySetAccessRule("Customers", EntitySetRights.All)
 config.SetEntitySetAccessRule("Orders", EntitySetRights.All)
 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2
 End Sub
End Class

Let’s look at the above code. First, we specified our EntityManager as the data container for the service by providing it as the
generic data type on the DataService<T> base class.

Second, we’ve specified that both of our entity sets, Customers and Orders, are visible and updatable.

Unknown macro: IBNote

The "IBNote" macro is not in the list of registered macros. Verify the spelling or contact your administrator.

Calling your service
At this point we are ready to test our service. Right-click ODataService.svc and select View in Browser. If everything went
well, you should receive the standard service definition response like this:

This response tells us that we have two entity sets as expected. So, let’s see if we can actually query some data.

Enter the following URL in the browser’s address bar:

Documentation - Enabling OData

Page 5 - Last modified on October 01, 2014 09:44

http://localhost:9009/ODataService.svc/Customers

Depending on the browser, you may have to view source in order to see the raw response.

At this point, our OData service can be consumed by any client that supports OData.

Advanced topics

Service operations

You can expose server methods in your WCF Data Service too. Here we'll add a simple service operation named
GetOrdersByCity, which as you might guess, will accept a city argument and return orders.

Adding the operation is easy. First we'll define a method in our ODataService class which returns an IQueryable and can be
called with an HTTP GET request:

C#[WebGet]
public IQueryable<Order> GetOrdersByCity(string city) {
 var mgr = this.CurrentDataSource;
 return mgr.Orders.Where(o => o.ShipCity == city);
}
CurrentDataSource is an instance of the EntityManager we defined for the service. OData has created it for us, so all we need
to do is define (and execute if we wish) the query we need. Here we use a simple LINQ query.

Next, we need to set the access to the method, which we can do in the InitializeService method we saw above. Here we allow
read access for everyone:

C#config.SetServiceOperationAccessRule("GetOrdersByCity", ServiceOperationRights.AllRead);

We can test this by opening our browser and navigating to a URL such as the following:
http://localhost:9009/ODataService.svc/GetOrdersByCity?city='Berlin'

Stored procedures

We can also call stored procedures defined in our domain model using the same technique we used for service operations.

You'll first need to define the stored procedure and add it to your EDMX. Once you've done this DevForce will generate a
corresponding StoredProcQuery in your model.

The NorthwindIB database includes a stored procedure named Employee_sales_by_country, so we added that to our model
and DevForce obligingly generated the following:

C#public System.Collections.Generic.IEnumerable<EmployeeSalesByCountry_Result>
EmployeeSalesByCountry(System.Nullable<System.DateTime> Beginning_Date, System.Nullable<System.DateTime> Ending_Date) {

http://msdn.microsoft.com/en-us/data/hh237663
http://msdn.microsoft.com/en-us/library/cc668788.aspx
http://msdn.microsoft.com/en-us/library/bb896231.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/stored-procedure-queries

Documentation - Enabling OData

Page 6 - Last modified on October 01, 2014 09:44

 var query=EmployeeSalesByCountryQuery(Beginning_Date, Ending_Date);
 var result=this.ExecuteQuery(query).Cast<EmployeeSalesByCountry_Result>();
 return result;
}

To expose this from our OData service, we need to follow the same steps as we did for the server method: 1) we define the
service operation method in the ODataService class, and 2) we set its access.

Here we're calling the service operation GetEmployeeSalesForPeriod, since it better describes what it does. Since dates can be
hard to pass correctly, we've also changed the arguments to strings. You'll notice we return an IEnumerable here too, since that's
both returned by execution of the query and acceptable to the WCF Data Service.

C#[WebGet]
public IEnumerable<EmployeeSalesByCountry_Result> GetEmployeeSalesForPeriod(string startDate, string endDate) {
 var mgr = this.CurrentDataSource;
 var dt1 = DateTime.Parse(startDate);
 var dt2 = DateTime.Parse(endDate);
 return mgr.EmployeeSalesByCountry(dt1, dt2);
}

C#config.SetServiceOperationAccessRule("GetEmployeeSalesForPeriod", ServiceOperationRights.AllRead);

To test the method, open the browser and navigate to a URL such as the following:
http://localhost:9009/ODataService.svc/GetEmployeeSalesForPeriod?startDate='1/1/1996'&endDate='12/31/1996'

Securing the service

There are several was to secure your OData service. See our sample on how to use basic authentication and authorization
headers.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-samples-odata-auth

