
Documentation - Pass parameters to a query

Page 1 - Last modified on February 22, 2013 11:26

Contents

• Variables as parameters
• Parameterized SQL

• Other parameterized queries
• Adhoc SQL
• Canonical functions

We can pass parameters to a LINQ query to control the SQL generated.  Parameterized queries can result in improved
performance: both in Entity Framework query plan compilation and in database execution plan caching and reuse.  

Variables as parameters
Parameters to a LINQ query often take the form of local variables, but you can reference properties and fields too.  When you
pass a non-constant value into an EntityQuery, DevForce will "parameterize" the query, and ensure that the resulting SQL is a
parameterized query.

For example, in the query below, we create a single query object but change the parameter customerName between executions
of this query.

C#String customerName = null; // The customerName variable is a 'parameter'
var query = entityManager.Customers.Where(c => c.CompanyName.StartsWith(customerName));
customerName = "A";
var customersStartingWithA = query.ToList();
customerName = "B";
var customersStartingWithB = query.ToList();

VBDim customerName As String = Nothing ' The customerName variable is a 'parameter'
Dim query = entityManager.Customers.Where(Function(c) c.CompanyName.StartsWith(customerName))
customerName = "A"
Dim customersStartingWithA= query.ToList()
customerName = "B"
Dim customersStartingWithB = query.ToList()
More complex queries that can be composed completely dynamically are discussed in dynamic queries.

One interesting side note is that the EntityManager treats parameterized and constant queries differently in its Query Cache.
 The following two queries are not equivalent:

C#// Parameterized query
customerName = "ABC";
var query1 = entityManager.Customers.Where(c => c.CompanyName.StartsWith(customerName));
var results1 = query1.ToList();
//Constant ("adhoc") query
var query2 = entityManager.Customers.Where(c => c.CompanyName.StartsWith("ABC"));
var results2 = query2.ToList();

Parameterized SQL
An EntityQuery using non-constant values, such as a local variable, field or property, will generate parameterized SQL in
DevForce.  This feature is available beginning in the 7.1.0 release.

For example, here's the query shown above which uses a local variable, customerName:

C#String customerName = "A";
var query = entityManager.Customers.Where(c => c.CompanyName.StartsWith(customerName));
var results = query.ToList();

It will generate the following parameterized SQL (in SQL Server):

SQLexec sp_executesql N'SELECT
[Extent1].[CustomerID] AS [CustomerID],
[Extent1].[CustomerID_OLD] AS [CustomerID_OLD],
[Extent1].[CompanyName] AS [CompanyName],
[Extent1].[ContactName] AS [ContactName],
[Extent1].[ContactTitle] AS [ContactTitle],
[Extent1].[Address] AS [Address],
[Extent1].[City] AS [City],
[Extent1].[Region] AS [Region],
[Extent1].[PostalCode] AS [PostalCode],
[Extent1].[Country] AS [Country],

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/dynamic-queries
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-cache


Documentation - Pass parameters to a query

Page 2 - Last modified on February 22, 2013 11:26

[Extent1].[Phone] AS [Phone],
[Extent1].[Fax] AS [Fax],
[Extent1].[RowVersion] AS [RowVersion]
FROM [dbo].[Customer] AS [Extent1]
WHERE [Extent1].[CompanyName] LIKE @p__linq__0 ESCAPE N''~''',N'@p__linq__0 nvarchar(4000)',@p__linq__0=N'A%'

Using a variable in the Where clause indicates to DevForce that parameterized SQL is wanted.  Parameterized SQL can
provide improved database performance since the query execution plan can be reused with differing parameters.  It can also
provide improved Entity Framework performance, as EF will automatically "compile" the query plan once into its query plan
cache, and reuse that cached plan.

Other parameterized queries

Lazily loaded navigation properties are considered parameterized queries, and generate parameterized SQL.

For example, retrieving all orders for a customer:

C#var orders = customer.Orders;

... results in the following SQL (in SQL Server):

SQLexec sp_executesql N'SELECT
[Extent1].[OrderID] AS [OrderID],
[Extent1].[CustomerID] AS [CustomerID],
[Extent1].[EmployeeID] AS [EmployeeID],
[Extent1].[OrderDate] AS [OrderDate],
[Extent1].[RequiredDate] AS [RequiredDate],
[Extent1].[ShippedDate] AS [ShippedDate],
[Extent1].[Freight] AS [Freight],
[Extent1].[ShipName] AS [ShipName],
[Extent1].[ShipAddress] AS [ShipAddress],
[Extent1].[ShipCity] AS [ShipCity],
[Extent1].[ShipRegion] AS [ShipRegion],
[Extent1].[ShipPostalCode] AS [ShipPostalCode],
[Extent1].[ShipCountry] AS [ShipCountry],
[Extent1].[RowVersion] AS [RowVersion]
FROM [dbo].[Order] AS [Extent1]
WHERE ([Extent1].[CustomerID] IS NOT NULL) AND ([Extent1].[CustomerID] = @p__linq__0)',N'@p__linq__0
uniqueidentifier',@p__linq__0='729DE505-EA6D-4CDF-89F6-0360AD37BDE7'

The EntityKeyQuery also results in parameterized SQL, as does a PassthruEsqlQuery which uses QueryParameters.

Adhoc SQL
When using a profiler (such as SQL Server Profiler), you'll notice that some queries result in direct execution of a SQL
statement.  This occurs when the query does not contain any parameters.

For example, this query uses a hardcoded constant instead of a variable:

C#var query = entityManager.Customers.Where(c => c.CompanyName.StartsWith("A"));
var results = query.ToList();

The resulting SQL (in SQL Server) is an "adhoc" query:

SQLSELECT
[Extent1].[CustomerID] AS [CustomerID],
[Extent1].[CustomerID_OLD] AS [CustomerID_OLD],
[Extent1].[CompanyName] AS [CompanyName],
[Extent1].[ContactName] AS [ContactName],
[Extent1].[ContactTitle] AS [ContactTitle],
[Extent1].[Address] AS [Address],
[Extent1].[City] AS [City],
[Extent1].[Region] AS [Region],
[Extent1].[PostalCode] AS [PostalCode],
[Extent1].[Country] AS [Country],
[Extent1].[Phone] AS [Phone],
[Extent1].[Fax] AS [Fax],
[Extent1].[RowVersion] AS [RowVersion]
FROM [dbo].[Customer] AS [Extent1]
WHERE [Extent1].[CompanyName] LIKE N'A%'

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitykeyquery
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/passthruesql-query#HQuerieswithparameters


Documentation - Pass parameters to a query

Page 3 - Last modified on February 22, 2013 11:26

Note that there is no risk of a SQL injection attack with an EntityQuery.  Query composition is not done using string
manipulation, and SQL is generated by the ADO.NET provider from the LINQ query expression.

Some queries or query types will not generate parameterized SQL:

• dynamic queries
• paging queries

Canonical functions
The Entity Framework provides a set of canonical functions that implement functionality that is common across many database
systems, such as string manipulation and mathematical functions.  Using DevForce, beginning in version 7.1.0, certain CLR
methods are mapped to canonical functions and will be translated to the correct corresponding store function.

Many string manipulation methods have corresponding database functions.  We saw that above with the StartsWith method,
which is translated into the Like canonical function.  Here's another example with ToUpper, which in SQL Server is translated
into the Upper operator.

C#string country = "GERMANY";
var query = entityManager.Customers.Where(c => c.Country.ToUpper() == country);
var result = query.ToList();

SQLexec sp_executesql N'SELECT
[Extent1].[Id] AS [Id],
[Extent1].[CompanyName] AS [CompanyName],
[Extent1].[ContactName] AS [ContactName],
[Extent1].[ContactTitle] AS [ContactTitle],
[Extent1].[Address] AS [Address],
[Extent1].[City] AS [City],
[Extent1].[Region] AS [Region],
[Extent1].[PostalCode] AS [PostalCode],
[Extent1].[Country] AS [Country],
[Extent1].[Phone] AS [Phone],
[Extent1].[Fax] AS [Fax],
[Extent1].[RowVersion] AS [RowVersion],
[Extent1].[CrtnTs] AS [CrtnTs],
[Extent1].[CrtnUsrId] AS [CrtnUsrId],
[Extent1].[ModTs] AS [ModTs],
[Extent1].[ModUsrId] AS [ModUsrId]
FROM [dbo].[Customer] AS [Extent1]
WHERE (UPPER([Extent1].[Country])) = @p__linq__0',N'@p__linq__0 nvarchar(4000)',@p__linq__0=N'GERMANY'

It's not necessary to use parameters with canonical functions, but you'll probably get better performance if you do.

Here's another example, this time using a DateTime canonical function.

C#var query = entityManager.OrderSummaries.Where(o=> o.OrderDate.Value.Year == DateTime.Now.Year);
var result = query.ToList();

The generated SQL (in SQL Server):

SQLSELECT
[Extent1].[Id] AS [Id],
[Extent1].[CustomerId] AS [CustomerId],
[Extent1].[EmployeeId] AS [EmployeeId],
[Extent1].[OrderDate] AS [OrderDate],
[Extent1].[RequiredDate] AS [RequiredDate],
[Extent1].[ShippedDate] AS [ShippedDate],
[Extent1].[ShipperId] AS [ShipperId],
[Extent1].[Freight] AS [Freight],
[Extent1].[ShipName] AS [ShipName],
[Extent1].[ShipAddress] AS [ShipAddress],
[Extent1].[ShipCity] AS [ShipCity],
[Extent1].[ShipRegion] AS [ShipRegion],
[Extent1].[ShipPostalCode] AS [ShipPostalCode],
[Extent1].[ShipCountry] AS [ShipCountry],
[Extent1].[RowVersion] AS [RowVersion],
[Extent1].[CrtnTs] AS [CrtnTs],
[Extent1].[CrtnUsrId] AS [CrtnUsrId],
[Extent1].[ModTs] AS [ModTs],
[Extent1].[ModUsrId] AS [ModUsrId]

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/dynamic-queries
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-paging
http://msdn.microsoft.com/en-us/library/bb738681.aspx


Documentation - Pass parameters to a query

Page 4 - Last modified on February 22, 2013 11:26

FROM [dbo].[OrderSummary] AS [Extent1]
WHERE (DATEPART (year, [Extent1].[OrderDate])) = (DATEPART (year, SysDateTime()))
VB developers:  You'll need to add the DateInterval as a known type if using it in an n-tier application.   

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/knowntypes#HHowtoindicateaknowntype3F

