
Documentation - Provide query and save services

Page 1 - Last modified on August 15, 2012 17:21

Contents

• Overview
• Example

In order to provide query, and optionally save, capabilities for your POCO objects a POCO Service Provider is needed.

Overview
The service provider is simply a class deployed "server-side" and decorated with the EnableClientAccess  attribute.  DevForce
uses this attribute to probe for POCO service providers.  You can have any number of service providers:  you can use a single
provider for all your POCO types, or a provider per POCO types, or separate providers for query and save; it's up to you.

Your provider should contain "query methods", which we'll describe in more detail in the following topic.  It might also
contain "save by convention" methods.  Saves of POCO objects can be accomplished in two ways: via convention-based
methods or by an "adapter" implementation.  Both will be described in a following topic.

DevForce will automatically call your query and save methods whenever an EntityManager query or SaveChanges method is
called.   

Example
The example below shows a simple POCO Service Provider which provides query and save logic for the POCO type "State" we
saw earlier.

C#namespace DomainModel {
  [EnableClientAccess]
 public class USStatesServiceProvider {
   public IEnumerable<State> GetStates() { ...  }
   public void InsertState(State entity) { ... }
   public void UpdateState(State current, State original) { ... }
   public void DeleteState(State entity) { ... }   
  }
}

VBNamespace DomainModel
  <EnableClientAccess>
 Public Class USStatesServiceProvider
  Public Function GetStates() As IEnumerable(Of State)
...
  End Function
  Public Sub InsertState(ByVal entity As State)
...
  End Sub
  Public Sub UpdateState(ByVal current As State, ByVal original As State)
...
  End Sub
  Public Sub DeleteState(ByVal entity As State)
...
  End Sub
 End Class
End Namespace

All of the actual method code is stubbed out in the example so that the overall structure can be seen. Any of these methods
can be omitted as long as the corresponding functionality is not needed.  So if we never planned on inserting, deleting or
updating a 'State' then the InsertState, UpdateState and DeleteState methods could all be omitted. Details of how such methods
can be implemented are described later.

In the example, the method names GetStates, InsertState, UpdateState, DeleteState are all "convention" based. More explicit
linkage between service methods and the underlying types can also be specified, as we'll see next.

• Provide query support
• Provide save support

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.DomainServices.EnableClientAccessAttribute.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/poco-serviceprovider-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/poco-save-mechanisms
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/poco-serviceprovider-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/poco-save-mechanisms

