
Documentation - Provide query support

Page 1 - Last modified on August 15, 2012 17:22

Contents

• Sample provider
• Convention vs. attributes

• Finding providers by convention
• The Query attribute alternative

• Query methods with parameters
• Parameterized query methods vs. LINQ
• Returning IQueryable vs. IEnumerable
• Include syntax is not supported for POCO queries

In order to provide support for POCO queries from your client-side EntityManager, a POCO Service Provider must be
defined. The service provider contains the query methods which will access the data source.

Sample provider
The example below shows a simple POCO Service Provider which provides the ability to perform client-side queries against a
collection of State POCO entities sourced from an XML file.

C#namespace DomainModel {
 [EnableClientAccess]
 public class PocoServiceProvider {
 public IEnumerable<State> GetStates() {
 if (_states == null) {
 _states = ReadStatesData("states.xml");
 }
 return states;
 }
 private static IEnumerable<State> ReadStatesData(string embeddedFileName) {
 ...
 }
 private static List<State> _states = null;
 }
}

VBNamespace DomainModel
 <EnableClientAccess>
 Public Class PocoServiceProvider
 Public Function GetStates() As IEnumerable(Of State)
 If _states Is Nothing Then
 _states = ReadStatesData("states.xml")
 End If
 Return states
 End Function
 Private Shared Function ReadStatesData(ByVal embeddedFileName As String) As IEnumerable(Of State)
...
 End Function
 Private Shared _states As List(Of State) = Nothing
 End Class
End Namespace

Convention vs. attributes
DevForce will discover service provider query methods which correspond to entity queries by either convention-based method
naming or by explicit attribute markup.

Finding providers by convention

The GetStates() method retrieves the data requested by a query (typically a query from the client).

The method name is important. It follows the same query naming conventions that DevForce uses to locate named query
methods. In brief, DevForce looks for a method whose name begins with a known prefix and is followed by an EntitySetname.
The EntitySet name can be anything that makes sense to you. Most developers use the plural of the POCO entity type name.

Here are the recognized prefixes:

• Get
• Query
• Fetch

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-method-naming-convention
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/named-query

Documentation - Provide query support

Page 2 - Last modified on August 15, 2012 17:22

• Retrieve
• Find
• Select

The GetStates method conforms to the convention: "Get" is the prefix; "States" is the EntitySet name.

The following query will be routed to the GetStates server-side query method when executed:

C#var statesQuery = new EntityQuery<State>("States", anEntityManager);

VBDim statesQuery = New EntityQuery(Of State)("States", anEntityManager)

The Query attribute alternative

The server method doesn't have to follow the naming convention. It can be named as you please as long as it's adorned with the
Query attribute.

C#[Query]
public IEnumerable<State> ReturnAllStates() {
 IEnumerable<State> states = ReadStatesData("states.xml");
return states;
}

VB<Query()> _
Public Function ReturnAllStates() As IEnumerable(Of State)
 Dim states As IEnumerable(Of State) = ReadStatesData("states.xml")
 Return states
End Function

You must adjust the client-side query to specify the full method name as the EntitySet name:

C#var statesQuery = new EntityQuery<State>("ReturnAllStates", anEntityManager);

VBDim statesQuery = New EntityQuery(Of State)("ReturnAllStates", anEntityManager)

Query methods with parameters
Methods with parameters are supported as well. For example, an additional overload to the GetStates() method above that only
returns states with a population size greater than a size passed in might be written as shown below. (Naturally, this would require
that the internal ReadStatesData() method be modified as well.)

C#public IEnumerable<State> GetStates(long minPopulationSize) {
 IEnumerable<State> states = ReadStatesData("states.xml",
 minPopulationSize);
return states;
}

VBPublic Function GetStates(ByVal minPopulationSize As Long) _
 As IEnumerable(Of State)
 Dim states As IEnumerable(Of State) = ReadStatesData("states.xml", _
 minPopulationSize)
 Return states
End Function

On the client side, parameters may be specified by using one of the EntityQuery.AddParameter() overloads. The following
snippet calls the parameterized GetStates() method to return just those states with a population greater than one million people:

C#var query = new EntityQuery<State>("States", anEntityManager);
query.AddParameter(1000000);

VBDim query = New EntityQuery(Of State)("States", anEntityManager)
query.AddParameter(1000000)

Any number of query parameters are permitted, and the standard .NET overload resolution rules apply. This means that the
order and type of the parameters are checked to find appropriate matches, with type coercion occurring as required.

Parameterized query methods vs. LINQ
The following two queries will return the same results:

C#var query1 = new EntityQuery<State>("States", anEntityManager);
query.Where(state => state.Population > 1000000);

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.DomainServices.QueryAttribute.html

Documentation - Provide query support

Page 3 - Last modified on August 15, 2012 17:22

var query2 = new EntityQuery<State>("States", anEntityManager);
query.AddParameter(1000000);

VBDim query1 = New EntityQuery(Of State)("States", anEntityManager)
query.Where(Function(state) state.Population > 1000000)
Dim query2 = New EntityQuery(Of State)("States", anEntityManager)
query.AddParameter(1000000)

Furthermore, in both cases, the restriction to those states with greater than one million population occurs on the server, not
the client. So the question arises: is one to be preferred over the other? The answer usually depends upon how the server-side
method itself is implemented.

In general, unless the server-side method can internally use the query parameter to restrict its own query against some back-
end data store, query parameters have no advantage over LINQ query restrictions. In fact, LINQ queries are far more flexible
and intuitive to work with under most circumstances. Nevertheless, there will be cases where a back-end data store’s ability to
optimize some queries will yield sufficient performance improvement to justify the use of query parameters.

For example, consider the Windows file system’s ability to search for files, given a path and wildcards. While the same result
could be accomplished via a server-side method that returned all of the files in the file system and then iterated over them
to locate a desired set of files, it would likely be faster to call the file system directly with the path and wildcard restrictions
provided via query parameters.

Returning IQueryable vs. IEnumerable
The GetStates POCO query returns an IEnumerable of State. That's fine for this example because there are only 50 state objects
and they are sourced from an XML file. The impact of a State query on the server is small whether the client asks for one state
or all states.

But what if the POCO is of type Order and we source orders from a database. If GetOrders returns an IEnumerable<Order>,
every time the client queries for orders the server retrieves every order in the database. There could be millions of orders. Every
client query would force the server to retrieve those millions of orders.

Even a filtered client query such as

C#var ordersQuery = new EntityQuery<Order>("Orders", anEntityManager).Where(o => o.OrderID == 42);

VBDim ordersQuery = New EntityQuery(Of Order)("Orders", anEntityManager).Where(function (o) o.OrderID = 42)

causes the server to first retrieve every order from the database and then filter down to the one order with ID of 42. That's
not going to perform well!

Suppose the Order data source can be queried with an IQueryable form of LINQ. Raw Entity Framework can do it with
LINQ-to-Entities; there is LINQ for NHibernate.

You then write an IQueryable<Order> GetOrders() query method on the server that returns the LINQ query. DevForce
appends the client's "Where" clause as before ... but now, when the query is executed on the server, the query is composed such
that the data source only returns the one order.

The difference between IEnumerable and IQueryable bears repeating. Both example queries return a single order to the client.
The supporting IQueryable server-side query method retrieves only one order from the database; the IEnumerable server-side
query method retrieves every order from the database before filtering down to the one desired order. That's a huge performance
- and scaling - improvement.

It pays to write POCO query methods that return IQueryable<T> when possible.

Include syntax is not supported for POCO queries
 The Include() syntax on a POCO entity query is not currently implemented. The call will compile but will not do anything.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/LINQ

