
Documentation - Cache a query

Page 1 - Last modified on August 15, 2012 17:22

Contents

• Query Cache
• Removing an entity clears the query cache
• Cache use when disconnected
• Modifications
• Stale entity data

The DevForce EntityManager maintains two caches that are used to determine caching behavior:

• An entity cache that contains every entity that gets added to an EntityManager.
• A query cache that contains every query that has been processed against a backend datastore that satisfies a specific set

of criteria (described later in this section). 

The rules by which a query's results are processed into the EntityManager's cache is determined by a QueryStrategy. When
following the default, “normal” QueryStrategy, the EntityManager tries first to satisfy a query from data in its cache; if it cannot
be satisfied by the cache, it then reaches out to the data source.

Query Cache
When a EntityManager begins to process a normal query, it checks its query cache to see if it has processed this exact query
before. If the EntityManager finds the query in the query cache, it assumes that the entities which are needed to satisfy the query
are in the entity cache; accordingly, it satisfies the query entirely from the entity cache without consulting the data source.

A one-to-many entity navigation, such as from an Employee to the Employee’s Orders, is translated implicitly to an
IEntityQuery instance that also enters the query cache. The next time the application navigates from that same Employee to its
Orders, the EntityManager will recognize that it has performed the query before and look only in the cache for those Orders.

If you use an EntityKeyQuery, DevForce performs a safe optimization and can check the cache first even if the query has
not been cached. The EntityKeyQuery also occurs when performing scalar navigation, such as from an OrderDetail to its parent
Order.

The query cache grows during the course of a session. Certain operations clear it in order to maintain cache coherency;
removing an entity from the cache is one such operation. The developer can also clear the query cache explicitly, or add queries
to the cache that he or she knows can be satisfied from the cache.

DevForce caches queries to improve performance. This analysis applies to both entity queries and entity navigation. Both
use the Optimized fetch strategy by default. Consider a query for employees with FirstName = "Nancy". The QueryStrategy is
Normal which means the fetch strategy is Optimized, which means that the retrieval will be from cache when possible.

When we execute this query in an empty EntityManager, there will be a trip across the network to fetch the entities from the
data source. We get back "Nancy Davolio" and "Nancy Sinatra". If we execute the query again, the EntityManager satisfies the
query from the entity cache and returns the same result; it does not seek data from the data source.

During the first run, the EntityManager stored the query in its Query Cache. The EntityManager stores the query in the query
cache when (a) the query is successful, (b) it searched the data source (not just the cache), and c) the query is invertible. The
second time it found the query in the Query Cache and thus knew it could apply the cache to the query instead.

If we change "Nancy Davolio" to "Sue" and run the query again, we get back just "Nancy Sinatra". If we change "Sally
Wilson" to "Nancy Wilson" and run it again, we’ll get the principals of a strange duet. So far, everything is working fine.

Meanwhile, another user saves "Nancy Ajram" to the data source. We run our query again and … we still have just a duet.
The EntityManager didn’t go to the data source so it doesn’t find the Lebanese pop star.

Such behavior may be just fine for this application. If it is not, the developer has choices. She can:

• Use a QueryStrategy with a different FetchStrategy that looks at the database first. This is typically the best practice.
• Clear the query cache explicitly by calling EntityManager.QueryCache Clear method.
• Clear the query cache implicitly by removing any entity from the entity cache.

You can also find other methods to manipulate the query cache by using the EntityManager's QueryCache property.

Removing an entity clears the query cache
When we remove an entity from an EntityManager’s entity cache (via the RemoveEntity or RemoveEntities methods), DevForce
automatically clears the entire query cache for that EntityManager. 

Note that we are NOT talking about deleting an entity here. Deletion does not cause a clearing of the query cache.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/start-entity-cache
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-strategy
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitykeyquery
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~QueryCache.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.QueryCache~Clear.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~QueryCache.html


Documentation - Cache a query

Page 2 - Last modified on August 15, 2012 17:22

Suppose we frequently query for employees hired this year. If we issue this query twice, the first query fetches the employees
from the database; the second retrieves them from the cache. The second query is almost instantaneous.

Then we remove an unrelated entity such as a Customer or an Address. We query again. Instead of reading from the cache
as it did before, the EntityManager goes back to the database for these employees.

Seems unfair, doesn’t it? But it’s the safe thing to do.

If we issue the same query multiple times, we expect the same results every time. We expect a different result only if data
relevant to our query have changed.

The EntityManager will search the local cache instead of the database only if it "believes" that all essential information
necessary to perform the query are resident in the cache. If it "thinks" that the cache has been compromised, it should go back
to the data source to satisfy the query.

Removing an entity compromises the cache. For sure it invalidates at least one query – the query that fetched it in the first
place. But is that the only invalidated query? The EntityManager does not know. So it does the safe thing and forgets all queries.

You and I know (or we think we know) that removing a Customer or Address has no bearing on employees hired this year.
The EntityManager cannot be so sure.

There are circumstances when (a) we have to remove an entity and (b) we are certain that no queries will be adversely
affected. For example, our query may return entities which we’ve marked as inactive. We never want inactive entities in our
cache but, for reasons we need not explain here, we have inactive entities in the cache.

We want to remove those entities. Being inactive they cannot possibly contribute to a correct query result.

Unfortunately, removing those entities clears the entire query cache. The EntityManager will satisfy future queries from the
database until it has rebuilt its query cache.

This is not a problem if we rarely have to purge inactive entities. But what if we have to purge them after almost every query?
(This is not a common scenario.) We will never have a query cache and we will always search the database. The performance of
our application will degrade.

Fortunately, there is a RemoveEntities signature that can remove entities without clearing the query cache. In the full
knowledge of the risk involved, we can call

EntityManager.RemoveEntities(entitiesToRemove, false)

The false parameter tells the EntityManager that is should not clear the query cache.

Remember: removing an entity and deleting it are different operations. Removing it from the cache erases it from client
memory; it says nothing about whether or not the entity should be deleted from its permanent home in remote storage. “Delete”,
on the other hand, is a command to expunge the entity from permanent storage. The “deleted” entity stays in cache until the
program can erase it from permanent storage.

Cache use when disconnected
When the EntityManager is in the disconnected state, it will satisfy a navigation, or a query submitted with the Normal
QueryStrategy, from the entity cache alone; it will not attempt to search the data source. The EntityManager raises an exception
if it discovers during query processing that it can’t reach the data source and a query strategy has been specified that requires
that the data source be accessed. See Take offline to learn more about disconnected operations.

Modifications
Each business object carries a read-only EntityState property that indicates if the object is new, modified, marked for deletion, or
unchanged since it was last retrieved.

It bears repeating that our local modifications affect only the cached copy of a business object, not its version in the data
source. The data source version won’t be updated until the application tells the EntityManager to save the changed object.

It follows that the data source version can differ from our cached copy either because we modified the cached copy or
because another user saved a different version to the data source after we retrieved our copy.

It would be annoying at best if the EntityManager overwrote our local changes each time it queried the data source.
Fortunately, in a normal query, the EntityManager will only replace an unmodified version of an object already in the cache; our
modified objects are preserved until we save or undo them.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/start-entity-cache
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/offline
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitystate


Documentation - Cache a query

Page 3 - Last modified on August 15, 2012 17:22

Stale entity data
All of this is convenient. But what if another user has made changes to a cached entity? The local application is referencing the
cached version and is unaware of the revisions. For the remainder of the user session, the application will be using out-of-date
data.

The developer must choose how to cope with this possibility. Delayed recognition of non-local changes is often acceptable. A
list of U.S. States or zip codes is unlikely to change during a user session. Employee name changes may be too infrequent and
generally harmless to worry about. In such circumstances the default caching and query behavior is fine.

If concurrency checking is enabled and the user tries to save a changed object to the data source, DevForce will
detect the collision with the previously modified version in the data source. The update will fail and DevForce will
report this failure to the application which can take steps to resolve it.

Some objects are so volatile and critical that the application must be alert to external changes. The developer can implement
alternative approaches to maintaining entity currency by invoking optional DevForce facilities for managing cached objects and
forcing queries that go to the data source and merge the results back into the cache.

The facilities for this are detailed in the Query Strategy section.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-strategy

