
Documentation - Query using LINQ

Page 1 - Last modified on September 18, 2012 08:40

Contents

• The EntityQuery
• EntityQuery basics

• Creating a query
• Basic tasks

• Get all entities of a type
• Simple property filter

• Query execution
• Logging & debugging
• Learn more

The most common and flexible method of composing a query is to use LINQ syntax with the EntityQuery.

DevForce LINQ is a comprehensive implementation with unique capabilities:

• can execute synchronously and asynchronously.
• applies to remote data source, local cache, or both simultaneously.
• works in 2-tier mode when the client has line-of-sight access to the database or in n-tier mode when a remote server

mediates between clients and the database.
• can be composed statically inline with other code or dynamically to accommodate user-defined query criteria that can

only be known at runtime.

Every valid EntityFramework LINQ query is also a valid DevForce LINQ query. The range and power of DevForce LINQ
querying may best be appreciated by taking a tour of the EntityFramework's  MSDN "101 LINQ Samples" web page. Every
sample works in DevForce, 2-tier or n-tier, whether sent to the database or applied to local cache.

Every EntityFramework entity type can be queried with DevForce LINQ: all forms of inheritance, complex types, anonymous
types, all association cardinalities (including many-to-many).

The DevForce LINQ query story begins with EntityQuery.

The EntityQuery
DevForce provides the EntityQuery<T> class to support LINQ syntax. The EntityQuery<T> implements .NET's
IQueryable<T> interface and offers a complete implementation of LINQ functionality, including multiple overloads for all of the
following standard LINQ operators:

All, Any, Average, Cast, Concat, Contains, Count, DefaultIfEmpty, Distinct, ElementAt, Except, First, FirstOrDefault,
GroupBy, Join, Last, LastOrDefault, OfType, OrderBy, OrderByDescending, Select, SelectMany, Single, SingleOrDefault, Skip,
SkipWhile, Take, TakeWhile, ThenBy, ThenByDescending, Sum, Union and Where.

Because an EntityQuery is most commonly used to query an Entity Data Model, DevForce is subject to the same restrictions
which the Entity Framework places on such queries.  For more information, see Supported and Unsupported LINQ Methods
(LINQ to Entities).  

Note that while an EntityQuery may be restricted from running against the Entity Framework on the backend, the same
query can always be executed locally against the EntityManager's cache regardless of any backend restrictions.  Similarly, POCO
queries, are also not subject to these restrictions. This is why some of the operators listed above, such as ElementAt, Last,
SkipWhile, and TakeWhile, among others, are still provided, even though they cannot be handled by the Entity Framework.
In practice, these restrictions tend to be a minimal hindrance because there is usually another method or overload that can
accomplish the same result.

Several additional DevForce-specific operators are offered as well, such as FirstOrNullEntity and support for building
untyped LINQ queries dynamically.

EntityQuery basics
Entity queries, like all LINQ queries, can be composed, executed and enumerated in a variety of stepwise ways. Consider, for
example, the following query:

C#var customersQuery =
  from cust in manager.Customers
  where cust.ContactTitle == "Sales Representative"
  orderby cust.CompanyName
  select cust;

VBDim customersQuery =
  From cust In manager.Customers

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/LINQ
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/dynamic-queries
http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityQuery%601.html
http://msdn.microsoft.com/en-us/library/bb351562.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-create
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/Entity+Framework
http://msdn.microsoft.com/en-us/library/bb738550.aspx
http://msdn.microsoft.com/en-us/library/bb738550.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/POCO
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/EntityQuery-extensions#HTheFirstOrNullEntity2829ExtensionMethod
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/dynamic-queries
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/dynamic-queries


Documentation - Query using LINQ

Page 2 - Last modified on September 18, 2012 08:40

  Where cust.ContactTitle = "Sales Representative"
  Order By cust.CompanyName
 Select cust

The same query can also be written using LINQ method-based syntax as shown below:

C#var customersQuery = manager.Customers
  .Where(c => c.ContactTitle == "Sales Representative")
  .OrderBy(c => c.CompanyName)

VBDim customersQuery = manager.Customers _
  .Where(Function(c) c.ContactTitle = "Sales Representative") _
  .OrderBy(Function(c) c.CompanyName) 

Whether to use query or method syntax is your choice.  Both syntaxes provide the same functionality, with minor differences.
 We generally use method, sometimes called fluent, syntax in our samples and snippets, but that's because it's the syntax we're
most comfortable with.  If you're a VB developer, query syntax can be much easier to write and read.

The above returns an EntityQuery<Customer>. It's often easier when working with generic types (especially nested generic
types), to use an implicitly typed variable, such as shown above.  This isn't required, and you can still use explicit type variables
too.

Creating a query

You may have wondered in looking at the above samples what manager.Customers referred to, and why you could append
LINQ methods to it.  When DevForce generates the code for your entity model it includes these helper properties on the
EntityManager.  Here's what Customers looks like:

C#public IbEm.EntityQuery<Customer> Customers {
 get { return new IbEm.EntityQuery<Customer>("Customers", this); }
}

VBPublic ReadOnly Property Customers() As IbEm.EntityQuery(Of Customer)
 Get
   return new IbEm.EntityQuery(Of Customer)("Customers", Me)
 End Get
End Property

DevForce does this to make it easy to compose more complex LINQ queries without having to explicitly construct the
EntityQuery from scratch every time.  You're not limited to using these helper properties, but most developers find them
useful.   

Basic tasks

The customersQuery we showed above may look a bit daunting if you're new to LINQ.  Queries can be as simple or complex as
you need.  Here are a few more samples of simple common queries.

Get all entities of a type

When you need to retrieve all instances of a type, all Employees for example, you need only provide a simple EntityQuery
without restriction or selection methods:

C#var query = manager.Employees;

VBDim query = manager.Employees

Or in query syntax:

C#var query = from emp in manager.Employees
            select emp;

VBDim query = From emp In manager.Employees
           Select emp

You can execute the query in any of the ways described below.  Remember that if there are potentially many instances of the
type it's usually not a good idea to bring all of them into the entity cache.  If you have 10,000 products for example, you rarely
need them all loaded into memory.

Simple property filter

You'll often want to retrieve a subset of entities based on filter criteria applied to simple properties of the entity.

For example, a query to retrieve all customers in the UK:

http://msdn.microsoft.com/en-us/library/bb397947.aspx
http://msdn.microsoft.com/en-us/library/bb383973.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-generate-entitymanager


Documentation - Query using LINQ

Page 3 - Last modified on September 18, 2012 08:40

C#var ukQuery = from cust in manager.Customers
              where cust.Country == "UK"              
              select cust;

VBDim ukQuery = From cust In manager.Customers
              Where cust.Country = "UK"
             Select cust

Query execution

As mentioned earlier, the DevForce EntityQuery<T> implements the IQueryable interface, which means that the execution of
the query is deferred until one of the following operations is performed on the query

• ToList is called on the query. 
• The query is enumerated in a foreach statement.
• One of the EntityManager ExecuteQuery,  ExecuteQueryAsync, TryExecuteQuery or TryExecuteQueryAsync methods is

called for the query.
• An immediate execution method is called on the query. These methods include First, Single, Count along with several

others.
• The AsScalarAsync() method is called followed by a call to an immediate execution method.

Note that Silverlight and Windows Store applications, because of their asynchronous nature, can only make use of two of
these mechanisms:

• Calling one of the ExecuteQueryAsync or TryExecuteQueryAsync method overloads.
• Calling the AsScalarAsync() method on the query followed by a call to an immediate execution method.

In the example below the addition of a call to ToList() forces DevForce to execute the query immediately:

C#List<Customer> customersList = manager.Customers
  .Where(c => c.ContactTitle == "Sales Representative")
  .OrderBy(c => c.CompanyName)
  .ToList();

VBDim customersList As List(Of Customer) = manager.Customers _
  .Where(Function(c) c.ContactTitle = "Sales Representative") _
  .OrderBy(Function(c) c.CompanyName) _
  .ToList()

As does the FirstOrNullEntity call in the example below.

C#Customer firstCustomer = manager.Customers
  .Where(c => c.ContactTitle == "Sales Representative")
  .OrderBy(c => c.CompanyName)
  .FirstOrNullEntity();

VBDim firstCustomer As Customer = manager.Customers _
  .Where(Function(c) c.ContactTitle = "Sales Representative") _
  .OrderBy(Function(c) c.CompanyName) _
  .FirstOrNullEntity()

The same queries executed asynchronously, would look like this.

C#var query = manager.Customers
  .Where(c => c.ContactTitle == "Sales Representative")
  .OrderBy(c => c.CompanyName);
var customers = await query.ExecuteAsync();

VBDim query = manager.Customers _
  .Where(Function(c) c.ContactTitle = "Sales Representative") _
  .OrderBy(Function(c) c.CompanyName)
Dim customers = Await query.ExecuteAsync()

and

C#var query = manager.Customers
  .Where(c => c.ContactTitle == "Sales Representative")
  .OrderBy(c => c.CompanyName);
Customer cust = await query.AsScalarAsync().FirstOrNullEntity();

VBDim query = manager.Customers _
  .Where(Function(c) c.ContactTitle = "Sales Representative") _
  .OrderBy(Function(c) c.CompanyName)

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~ExecuteQuery.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~ExecuteQueryAsync.html


Documentation - Query using LINQ

Page 4 - Last modified on September 18, 2012 08:40

Dim cust as Customer = Await query.AsScalarAsync().FirstOrNullEntity()

In the above you may have noticed that instead of calling either the ExecuteQuery or ExecuteQueryAsync methods on
the EntityManager, we called execute methods directly on the query itself.  Query extension methods such as Execute and
ExecuteAsync give you additional flexibility in how you execute a query. These are equivalent to the EntityManager methods,
except with one important distinction.  If a query is created without an EntityManager and executed with a query extension
method, then that query will fail if you do not assign an EntityManager.

You can find more information on asynchronous queries here.

Logging & debugging
The DevForce debug log can be used to see more information regarding which queries are executed and when. Information
about every query sent to the EntityServer will be written to the debug log.  You can also log the generated SQL for queries
using the shouldLogSqlQueries attribute on the logging element in your config file.

Learn more
For more information on the basics of LINQ queries see 101 LINQ query examples and its corresponding code solution, the
Query Explorer.

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityQueryExtensions~Execute.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityQueryExtensions~ExecuteAsync.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/asynchronous-queries
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/logged-info
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-configuration#HLoggingElement
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-101-examples
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-query-explorer

