
Documentation - Merge query results into the entity cache

Page 1 - Last modified on August 15, 2012 17:21

Contents

• MergeStrategy
• MergeStrategy behavior

• Is the entity current or obsolete relative to the data source?
• How has it changed?
• Is the entity represented in the data source?
• Merging when the entity is in the data source
• Merging when the cached entity is not in the data source
• DataSourceOnly subtleties

DevForce uses a MergeStrategy to determine how to reconcile potential conflicts between entities that are being merged into
the cache with the entities that are already present in the cache.

For example, you may have an existing version of an entity in the cache, and are trying to merge with a "new" version
of the same entity (the two entities have the same primary key). This "new" entity may be the result of a query, a call to
RefetchEntities, or may be an entity that is being imported from another workflow using a different EntityManager. If one or
both entities have been changed, the MergeStrategy is used to determine which version of the entity is stored in cache.

MergeStrategy
DevForce supports five different MergeStrategies : PreserveChanges, OverwriteChanges,
PreserveChangesUnlessOriginalObsolete, PreserveChangesUpdateOriginal, and NotApplicable. Their meanings are shown in the
table below.

When reviewing the table, remember that, for every cached DevForce entity, two states are maintained: Original and
Current . The Original state comprises the set of values for all properties as they existed at the time of the last retrieval from, or
save to, the datasource. The Current state comprises the set of values for the object’s properties as the end user sees them. That
is, the Current state values reflect any local changes that have been made since the entity was retrieved, or last saved. When an
entity is persisted, it is the values in its Current state that are saved.

MergeStrategies:

Strategy Action when cached entity has pending changes

PreserveChangesPreserves the state of the cached entity.

OverwriteChangesOverwrites the cached entity with data from the data source. Sets the EntityState of the cached entity to Unchanged.

PreserveChangesUnless
OriginalObsolete 

Preserves the values in the Current state of the cached entity, if its Original state matches the state retrieved from the
datasource.

If the state as retrieved from the datasource differs from that found locally in the Original set of property values, this
indicates that the entity has been changed externally by another user or process. In this case (with this MergeStrategy),
DevForce overwrites the local entity, setting the values in both its Current and Original states to match that found in the
datasource. DevForce also then sets the EntityState of the cached instance to Unchanged.

PreserveChangesUpdateOriginal Unconditionally preserves the values in the Current version for the cached entity; and also updates the values in its Original
version to match the values in the instance retrieved from the datasource. This has the effect of rendering the local entity
savable (upon the next attempt), when it might otherwise trigger a concurrency exception.

NotApplicable This merge strategy must be used – and may only be used – with the CacheOnly fetch strategy. No merge action applies
because no data is retrieved from any source outside the cache.

MergeStrategy behavior
What happens during the merge of a data source entity and a cached entity depends upon the answers to three crucial questions:

1. Is the entity current or obsolete?
2. How has it changed?
3. Is the entity represented in the data source?

Is the entity current or obsolete relative to the data source?

We compare the cached entity’s concurrency column property value to that of its data source entity. If the two are the same, the
cached entity is current; if they differ, the cached entity is obsolete.

As it happens, the cached entity has two concurrency column property values, a current one and an original one. The value
of the concurrency column in the current version is meaningless. It’s the value of the concurrency column in the original version
that counts.

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.QueryStrategy~MergeStrategy.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~RefetchEntities.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.MergeStrategy.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityVersion.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityVersion.html


Documentation - Merge query results into the entity cache

Page 2 - Last modified on August 15, 2012 17:21

Every DevForce entity has an original version and a current version of its persistent state. We can get to one or the other by
means of a static GetValue() method defined on the EntityProperty class. For example, the following code gets the original value
(as retrieved from the database) for the RequiredDate property of a particular Order instance:

C#DomainModelEntityManager mgr = DomainModelEntityManager.DefaultManager;
anOrder = mgr.Orders.Where(o => o.OrderID == 10248).First();
Datetime reqdDate = Order.PropertyMetadata.RequiredDate.GetValue(
  anOrder, EntityVersion.Current);

VBDomainModelEntityManager.DefaultManager
anOrder = mgr.Orders.Where(Function(o) o.OrderID = 10248).First()
Dim reqdDate As Datetime = Order.PropertyMetadata.RequiredDate.GetValue(
  anOrder, EntityVersion.Current)

Both of the following statements get the current value for the same property:

C#reqdDate = Order.PropertyMetadata.RequiredDate.GetValue(
  anOrder, EntityVersion.Current);
reqdDate = anOrder.RequiredDate; // same as above (but simpler!)

VBreqdDate = Order.PropertyMetadata.RequiredDate.GetValue(anOrder, EntityVersion.Current)
reqdDate = anOrder.RequiredDate ' same as above (but simpler!)

Again, DevForce and the Entity Framework determine if our cached entity is current or obsolete based on the original version
of the property value.

How has it changed?

The merge action depends upon whether the entity was added, deleted, or changed since we set its original version. The entity’s
EntityState property tells us if and how it has changed. 

Is the entity represented in the data source?

If there is a data source entity that corresponds to the cached entity, we may use the data from data source entity to change the
cached entity in some way.

If we don’t find a matching data source entity, we have to decide what to do with the cached entity. Maybe someone deleted
the data source entity in which case we might want to discard the cached entity. If we, on the other hand, we want to save the
cached entity, we’ll have to insert it into the data source rather than update the data source.

Merging when the entity is in the data source

We’ll look at each strategy and describe the outcome based on (a) whether or not the cached entity is current and (b) the entity’s
EntityState.

If the entity is Unchanged, we always replace both its original and current versions with data from the data source entity.

Our remaining choices are evident in the following table.

Merge strategy consequences for a changed cached entity that exists in the data source.

Merge Strategy  Current  Added  Deleted  Detached  Modified  Post
Current

PreserveChanges Y NC NC NC NC Y

                N NC NC NC NC N

OverwriteChangesY or N OW OW OW OW Y

PreserveChangesUnless
OriginalObsolete 

Y ---- NC NC NC Y

                      N OW OW OW OW Y

PreserveChangesUpdateOriginal Y or N NC NC NC NC Y

• NC = No change; preserve the current version values of the cached entity
• OW = Overwrite the cached entity’s current version values with data from the data source entity
• Post Current = ‘Y’ means the cached entity is “current” relative to the data source after the merge.

There are important artifacts not immediately observable from this table.

The entity’s EntityState may change after the merge. It will be marked Unmodified after merge with OverwriteChanges. It will
be marked Unmodified after merge with PreserveChangesUnlessOriginalObsolete if the entity is obsolete.



Documentation - Merge query results into the entity cache

Page 3 - Last modified on August 15, 2012 17:21

Note that deleted and detached entities are resurrected in both cases.

An added cached entity must be deemed “obsolete” if it already exists in the data source. The entity exists in the data source
if the query returns an object with a matching primary key. If we think we created Employee with Id=3 and we fetch one with
Id=3, someone beat us to it and used up that Id value. Our entity is obsolete. We will not be able to insert that entity into the
data source; we’ll have to update the data source instead.

The PreserveChangesUpdateOriginal strategy enables us to force our changes into the data source even if the entity is
obsolete. An added entity merged with PreserveChangesUpdateOriginal will be marked Modified so that DevForce knows to
update the data source when saving it.

These effects are summarized in the following table:

EntityState after merge.

Merge Strategy  Current  Added  Deleted  Detached  Modified 

PreserveChanges Y or N A D Dt M

OverwriteChanges Y or N U U U U

PreserveChangesUnless
OriginalObsolete

Y --- D Dt M

  N U U U U

PreserveChangesUpdateOriginal Y or N M D Dt M

• A = Added  
• D = Deleted 
• Dt = Detached 
• M = Modified 
• U = Unchanged

The merge may change the original version of a changed cached entity to match the data source values.

• PreserveChanges never touches the original version.
• The original version is always changed with the OverwriteChanges strategy.
• It is reset with the PreserveChangesUnlessOriginalObsolete strategy if (and only if) the entity is obsolete..
• PreserveChangesUpdateOriginal updates the original version (but not the current version!) if the entity is obsolete. This

step ensures that the cached entity appears current while preserving the pending changes.

These effects are summarized in the following table:

Merge strategy effect on the original version of the cashed entity.

Merge Strategy  Current  Added  Deleted  Detached  Modified 

PreserveChanges Y or N NC NC NC NC

OverwriteChanges Y or N OW OW OW OW

PreserveChangesUnless
OriginalObsolete

Y ---- NC NC NC

  N OW OW OW OW

PreserveChangesUpdateOriginal Y or N OW OW OW OW

Merging when the cached entity is not in the data source

We begin by considering cached entities that are unchanged. If the query applied to the cache returns an unchanged entity, ‘X’,
and the query applied to the data source did not return its mate, we can safely assume that ‘X’ was deleted after we fetched it.
We can remove ‘X’ from the cache.

We turn next to changed cached entities where we must distinguish between a query that tests only for the primary key and
one that tests for something other than the primary key.

If the query tests for anything other than the primary key, we can draw no conclusions from the fact that a cached entity was
not found in the database. For what does it mean if we have an employee named "Sue" in cache and we don’t find her in the
data source? Perhaps someone deleted her from the data source. Maybe someone merely renamed her. Maybe we renamed her.
The combinations are too many to ponder.

On the other hand, if we query for Employee with Id = 3 and we don’t find that employee in the data source, we can be
confident of a simple interpretation. DevForce confirms that the primary key has not changed. While it is good practice to use
immutable keys, it is not always so. If the primary key has been changed, DevForce leaves the cached entity alone. A business



Documentation - Merge query results into the entity cache

Page 4 - Last modified on August 15, 2012 17:21

object must have unique identity so if it isn’t there, either it was never there or it has been deleted. What happens next depends
upon the EntityState of the cached entity and the merge strategy.

• DevForce recovers gracefully when it attempts to save an entity marked for deletion and it can’t find the data source
entity to delete so the merge can leave this cached entity alone. It can also skip over the detached entities.

• PreserveChanges forbids merge effects on changed entities. The entity stays put in the cache.
• OverwriteChanges takes the data source as gospel. If the cached entity’s EntityState is Modified, there should be an

existing data source entity. There is not, so DevForce assumes the data source entity has been deleted and the cache
should catch up with this reality. It removes the entity from the cache.  Removal from the cache is just that. The entity
disappears from cache and will not factor in a save. It does not mean “delete” which requires DevForce to try to delete
the entity from the data source. It is an action neutral to the data source.
On the other hand, if the cached entity is new (Added), we don’t expect it to be in the data source. The entity remains “as
is” in the cache, a candidate for insertion into the data source.

• PreserveChangesUnlessOriginalObsolete behaves just like OverwriteChanges.
• PreserveChangesUpdateOriginal strives to position the entity for a successful save. It must intervene to enable data source

insertion of a modified entity by changing its EntityState to Added. An update would fail because there is no data source
entity to update. 

In summary:

Merge strategy consequences for a changed cached entity that does not exist in the data source.

Merge Strategy  Added  Modified 

PreserveChanges A M

OverwriteChanges A R

PreserveChangesUnlessOriginalObsolete  A R

PreserveChangesUpdateOriginal  A A

• A = Added 
• M = Modified
• R = Removed

DataSourceOnly subtleties

We may get a nasty surprise if we use a DataSourceOnly or DataSourceThenCache query with other than the OverwriteChanges
merge strategy. Consider the following queries using the PreserveChanges merge strategy.

Suppose we hold the "Nancy" employee in cache. We change her name to "Sue" and then search the database for all
Employees with first names beginning with ‘S’. We will not get "Sue" because she is still "Nancy" in the database.

Suppose we search again but this time we search for first names beginning with ‘N’. This time we get "Sue". That
will confuse the end user but it is technically correct because the “Sue” in cache is still "Nancy" in the database.
DataSourceThenCache will produce the same anomaly for the same reason: the database query picks up the object in the
database as "Nancy" but preserves the modification in cache which shows her as "Sue". 


